• Title/Summary/Keyword: mannanase C

Search Result 42, Processing Time 0.025 seconds

Isolation and Characterization of Mannanase-Producing Bacillus amyloliquefaciens YJ17 from Spent Mushroom (Flammulina velutipes) Substrates

  • Kim, Hye Soo;Kim, Chul Hwan;Kwon, Hyun Sook;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • The mannanase-producing bacteria, designated YJ17, was isolated from spent mushroom (Flammulina velutipes) substrates. The isolate YJ17 was a facultative anaerobic and was grown at temperatures ranging from $20^{\circ}C$ to $50^{\circ}C$ with an optimal temperature of $40^{\circ}C$. The DNA G+C content of the YJ17 was 44 mol%. The major fatty acids were anteiso-15:0 (38.9%), 17:0 (7.6%), and iso-15:0 (36.5%). The 16S rRNA gene sequence similarity between the isolate YJ17 and other Bacillus strains was from 98% to 99%. In the phylogenetic analysis based on these sequences, the isolate YJ17 and Bacillus amyloliquefaciens clustered within a group together and separated from other species of Bacillus. Based on the physiological and molecular properties, the isolate YJ17 was classified within the genus Bacillus as B. amyloliquefaciens YJ17. The optimal pH and temperature for mannanase activity of B. amyloliquefaciens YJ17 were pH 7.0 and $50^{\circ}C$, respectively.

Identification and Growth Activity to Bifidobacterium spp. of Locust Bean Gum Hydrolysates by Trichoderma harzianum ${\beta}$-mannanase (Trichoderma harzianum 유래 ${\beta}$-mannanase에 의한 Locust Bean Gum 가수분해 올리고당의 동정 및 Bifidobacterium spp.에 대한 생육활성)

  • Kim, Yu-Jin;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.364-369
    • /
    • 2005
  • This study was performed to elucidate substrate specificity to the locust bean gum galactomannan by Trichoderma harzianum ${\beta}-mannanase$. The medium composition for enzyme production were determined 3% cellulose, 3% corn steep liquor, 1% $KH_2PO_4$, 0.2% $(NH_4){_2}SO_4$, and incubated for 115 hr at $28^{\circ}C$. The ${\beta}-mannanase$ exhibited maximum activity at pH 4.5 and $60^{\circ}C$. Locust bean gum galactomannan was hydrolyzed by the ${\beta}-mannanase$, and then hydrolysates separated by activated carbon column chromatography. The main hydrolysates were composed of D.P 4 and 7 galactosyl mannooligosaccharides by TLC. For the elucidate the structure of D.P 4 and 7 oligosaccharides, methylation analysis was performed. D.P 4 and 7 were identified as M-M-M-M and M-M-M-M-M (G- and M-represent ${\alpha-1,6-D-galactosidic\;and\;{\beta}-1,4-mannosidic$ linkages, respectively). //G-G To investigate the effects of locust bean gum galactosyl mannooligosaccharides on the in vitro growth of B. longum, B. bifidum, B. infantis, and B. breve, Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P 4 and 7 galactosyl mannooligosaccharides, respectively. B. longum grew up 3.4-fold and 4.3-fold more effectively by the replacement of D.P 4 and 7 galactosyl mannooligosaccharides as the carbon source in a comparasion of standard MRS.

Isolation of Mannanase-producing Bacteria, Bacillus subtilis WL-6 and WL-11, and Cloning and Characterization of Mannanase (Bacillus subtilis 분리균 2주 유래 mannanases의 특성 비교)

  • Yoon, Ki-Hong
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1113-1120
    • /
    • 2016
  • Two bacterial strains producing extracellular man nanase were isolated from doenjang, a traditionally fermented soybean paste in Korea. The isolates, WL-6 and WL-11, were identified as Bacillus subtiis on the basis of their 16S rRNA gene sequences, morphological, and biochemical properties. Two genes encoding the mannanase of both B. subtilis WL-6 and B. subtilis WL-11 were each cloned into Escherichia coli, and their nucleotide sequences were determined. Both mannanase genes consisted of 1,086 nucleotides, encoding polypeptides of 362 amino acid residues. The deduced amino acid sequences of the two WL-6 and WL-11 mannanases, designated Man6 and Man11, respectively, differed from each other by eight amino acid residues, and they were highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. The 26 amino acid stretch in the N-terminus of Man6 and Man11 was a predicted signal peptide. Both Man6 and Man11 were localized at the level of 94–95% in an intracellular fraction of recombinant E. coli cells. The enzymes hydrolyzed both locust bean gum and mannooligosaccharides, including mannotriose, mannotetraose, mannopentaose, and mannohexaose, forming mannobiose and mannotriose as predominant products. The optimal reaction conditions were 55°C and pH 6.0 for Man6, and 60°C and pH 5.5 for Man11. Man11 was more stable than Man6 at high temperatures.

Mannanolytic Enzyme Activity of Paenibacillus woosongensis (Paenibacillus woosongensis의 만난분해 효소활성)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.397-400
    • /
    • 2010
  • The activities of mannanase, ${\beta}$-mannosidase, and ${\alpha}$-galactosidase were detected in culture filtrate of Paenibacillus woosongensis showing mannanolytic activity for locust bean gum. Optimal conditions occurred at pH 5.5 and $60^{\circ}C$ for mannanase toward locust bean gum, pH 6.5 and $50^{\circ}C$ for ${\beta}$-mannosidase toward para-nitrophenyl-${\beta}$-D-mannopyranoside, and pH 6.0-6.5 and $50^{\circ}C$ for ${\alpha}$-galactosidase toward para-nitrophenyl-${\alpha}$-D-galactopyranoside in the culture filtrate, respectively. The mannanolytic enzyme of culture filtrate hydrolyzed mannobiose as well as manno-oligosaccharides including mannotriose, mannotetraose, mannopentaose and mannohexaose. It could also hydrolyze ${\alpha}$-1,6 linked galacto-oligosaccharides such as melibiose, raffinose and stachyose to liberate galactose residue. From these results, it is assumed that P. woosongensis produces three enzymes required for the complete decomposition of galactomannan.

Molecular cloning and characterization of β-mannanase B from Cellulosimicrobium sp. YB-43 (Cellulosimicrobium sp. YB-43의 mannanase B 유전자 클로닝과 특성 분석)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.336-343
    • /
    • 2016
  • A mannanase gene was cloned into Escherichia coli from Cellulosimicrobium sp. YB-43, which had been found to produce two kinds of mannanase, and sequenced completely. This mannanase gene, designated manB, consisted of 1,284 nucleotides encoding a polypeptide of 427 amino acid residues. Based on the deduced amino acid sequence, the ManB was identified to be a modular enzyme including two carbohydrate binding domains besides the catalytic domain, which was highly homologous to mannanases belonging to the glycosyl hydrolase family 5. The N-terminal amino acid sequence of ManB, purified from a cell-free extract of the recombinant E. coli carrying a Cellulosimicrobium sp. YB-43 manB gene, has been determined as QGASAASDG, which was correctly corresponding to signal peptide predicted by SignalP4.1 server for Gram-negative bacteria. The purified ManB had a pH optimum for its activity at pH 6.5~7.0 and a temperature optimum at $55^{\circ}C$. The enzyme was active on locust bean gum (LBG), konjac and guar gum, while it did not exhibit activity towards carboxymethylcellulose, xylan, starch, and para-nitrophenyl-${\beta}$-mannopyranoside. The activity of enzyme was inhibited very slightly by $Mg^{2+}$, $K^+$, and $Na^+$, and significantly inhibited by $Cu^{2+}$, $Zn^{2+}$, $Mn^{2+}$, and SDS. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose, which was the most predominant product resulting from the ManB hydrolysis for mannooligosaccharides and LBG.

Purification and Characterization of Endo-$\beta$-1,4 Mannanase from Aspergillus niger gr for Application in Food Processing Industry

  • Naganagouda, K.;Salimath, P.V.;Mulimani, V.H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1184-1190
    • /
    • 2009
  • A thermostable extracellular $\beta$-mannanase from the culture supernatant of a fungus Aspergillus niger gr was purified to homogeneity. SDS-PAGE of the purified enzyme showed a single protein band of molecular mass 66 kDa. The $\beta$-mannanase exhibited optimum catalytic activity at pH 5.5 and $55^{\circ}C$. It was thermostable at $55^{\circ}C$, and retained 50% activity after 6 h at $55^{\circ}C$. The enzyme was stable at a pH range of 3.0 to 7.0. The metal ions $Hg^{2+}$, $Cu^{2+}$, and $Ag^{2+}$ inhibited complete enzyme activity. The inhibitors tested, EDTA, PMSF, and 1,10-phenanthroline, did not inhibit the enzyme activity. N-Bromosuccinimide completely inhibited enzyme activity. The relative substrate specificity of enzyme towards the various mannans is in the order of locust bean gum>guar gum>copra mannan, with $K_m$ of 0.11, 0.28, and 0.33 mg/ml, respectively. Since the enzyme is active over a wide range of pH and temperature, it could find potential use in the food-processing industry.

Purification and Properties of ${\beta}-Mannanases$ from Germinated Guar Bean (${\beta}-Mannanase$ 군(群)의 정제(精製) 및 그들의 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Su-Rae
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.1-13
    • /
    • 1966
  • 1) Three ${\beta}-1$, 4-mannanases were isolated from germinated guar bean through extraction, ammonium sulfate fractionation, column chromatography on cellulose derivatives and gel filltration on Sephadex G-100. They were designated as ${\beta}-1$, 4-mannanase A,B and C, respectively, in the order of isolation. 2) These enzymes were different in several aspects such as pH optimum, effect of metal ions, adsorbability on cellulose derivatives, molecular weight, Michaelis constant toward reduced ivory nut mannan A, mode of action and extent of hydrolysis of the mannan. 3) ${\beta}-1$, 4-Mannanases A and C were proposed to be two different endo-enzymes of random-splitting type producing a series of oligosaccharides from ${\beta}-1$, 4-mannans. ${\beta}-1$, 4-Mannanase B was suggested to be possibly an exe-type enzyme catalyzing a stepwise splitting from the non-reducing end of ${\beta}-1$, 4-mannans to produce mannose. 4) Guaran was subjected to hydrolysis by the purified enzymes and the consequence was discussed in connection with structural requirements of the enzymes toward substituted ${\beta}-1$, 4-mannans and their role in germinating guar seeds.

  • PDF

Cloning of a Bacillus subtilis WL-7 Mannanase Gene and Characterization of the Gene Product

  • KWEUN , MIN-A;LEE, MI-SUNG;CHOI, JOON-HO;CHO, KI-HAENG;YOON, KI-HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1295-1302
    • /
    • 2004
  • A gene encoding the mannanase of Bacillus subtilis WL-7, which had been isolated from Korean soybean paste, was cloned into Escherichia coli, and the gene product was purified from the culture filtrate of the recombinant E. coli. This mannanase gene, designated manA, consisted of 1,086 nucleotides, encoding a polypeptide of 362 amino acid residues. The deduced amino acid sequence was highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. The molecular mass of the purified mannanase was 38 kDa as estimated by SDS-PAGE. The enzyme had a pH optimum at 6.0 and a temperature optimum at $55^{\circ}C$. The enzyme was active on locust bean gum, konjak, guar gum, and lichenan, while it did not exhibit activity towards yeast mannan, laminarin, carboxymethylcellulose, $\beta$­glucan, xylan, and para-nitrophenyl-$\beta$-mannopyranoside.

A New Method for the Preparation of Mannotriose from White Copra Meal Using the Enzyme System and Yeast Fermentation (효소법과 효모발효법을 이용한 White Copra Meal로 부터의 Mannotriose의 새로운 조제법)

  • Gwi-Gun Park
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.1020-1025
    • /
    • 1995
  • A new method was developed to prepare ${\beta}-1$, 4-mannotriose by the enzymatic hydrolysis of white copra meal and the subsequent elimination of monosaccharides and mannobiose from the resulted hydrolysate with a yeast. The optimum pH and temperature for the mannanase were 6 and $50^{\circ}C$, respectively. The mannanase was stable between pH 5.5 and 7 after 2hr treatment at $30^{\circ}C$. White copra meal(70g) was hgydrolyzed with the mannanase(3,450units/500ml) at pH 6 and $50^{\circ}C$ for 24hr. The hydolysis products were monosaccharides, mannobiose and mannotriose. By the elimination of monosaccharides and mannobiose from the hydrolysis products with Candida guilliermondii IFO 0556, 12.1g of mannotriose was obtained without the use of chromatographic techiniques.

  • PDF

Effect of dietary β-mannanase on productive performance, egg quality, and utilization of dietary energy and nutrients in aged laying hens raised under hot climatic conditions

  • Kim, Moon Chan;Kim, Jong Hyuk;Pitargue, Franco Martinez;Koo, Do Yoon;Choi, Hyeon Seok;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1450-1455
    • /
    • 2017
  • Objective: The objective of this experiment was to investigate the effect of dietary ${\beta}-mannanase$ on productive performance, egg quality, and utilization of dietary energy and nutrients in aged laying hens raised under hot climatic conditions. Methods: A total of 320 84-wk-old Hy-line Brown aged laying hens were allotted to one of four treatments with eight replicates in a completely randomized design. Two dietary treatments with high energy (HE; 2,800 kcal/kg nitrogen-corrected apparent metabolizable energy [$AME_n$]) and low energy (LE; 2,700 kcal/kg $AME_n$) were formulated. Two additional diets were prepared by adding 0.04% (MN4) or 0.08% ${\beta}-mannanase$ (MN8) to LE treatment diets. The feeding trial was conducted for 28 d, covering a period from July to August in South Korea. The average daily room temperature and relative humidity were $29.2^{\circ}C$ and 83%, respectively. Results: Productive performance, egg quality, and cloacal temperature were not influenced by dietary treatments. The measured $AME_n$ values for MN8 diets were similar to those for HE diets, which were greater (p<0.05) than those for LE and MN4 diets. However, the $AME_n$ values for MN8 diets did not differ from those for LE and MN4 diets. Conclusion: The addition of ${\beta}-mannanase$ to low energy diets increases energy values for diets fed to aged laying hens. However, this increase has little positive impacts on performance and egg quality. These results indicate that dietary ${\beta}-mannanase$ does not mitigate the heat stress of aged laying hens raised under hot climatic conditions.