• Title/Summary/Keyword: manifold

Search Result 1,797, Processing Time 0.024 seconds

A Framework for the Geometric Modeler with Open Architecture (개방형 형상모델러의 시스템 설계)

  • S.H. Han;G.H. Choi;S.H. Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.9-18
    • /
    • 1995
  • The use of CAD/CAM systems is growing fast in the shipbuilding industry. To develope a geometric modeler, the existing CAD/CAM systems have been analysed. Because existing systems have closed architectures, it is not easy to investigate the internal structures. However, new trends in the software engineering, open architectured systems, pose some possibility to develope the geometric modeler. Several geometric modelers are analysed to extract component functions and modules. ACIS of the Spatial Technology, AIS of the CAM-I consortium, the STEP part for the geometry and topology, CAD*I of the ESPRIT project, and domestic modelers are investigated. Based on this analysis, a reference model which shows the framework of the modeler is proposed. With the data structure supporting non-manifold topologies, the reference model can be used to encourage a cooperative development program.

  • PDF

Vascular Injuries Due to Penetrating Missile Trauma in Anti-Terrorism Ops

  • Dhillan, Rishi;Bhalla, Alok;Kumar Jha, Sushil;Singh, Hakam;Arora, Aman
    • Journal of Trauma and Injury
    • /
    • v.32 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • Purpose: Penetrating vascular trauma though less common poses a challenge to all Surgeons. This study was designed to analyse the profile, management modalities of vascular trauma and the outcomes thereof at a Trauma Care Centre in a Tertiary care setting in hostile environment in India. Methods: A prospective review of all patients with arterial and venous injuries being transferred to the Trauma Center at out Tertiary Care Center between June 2015 and May 2018 was done. Demographics, admission data, treatment, and complications were reviewed. Results: There were a total of 46 patients with 65 vascular injuries, 39 arterial injuries and 26 venous injuries. The age range was 21 to 47 years. Nineteen patients had both arterial and venous injuries. A total of 42 cases presented within 12 hours of injury and complete arterial transections were found in 33 cases (80.49%). There were three mortalities (6.52%) and three amputations (8.33%). The overall limb salvage rate was 91.67% with popliteal artery being the commonest injured artery. Poor prognosticators for limb salvage were increasing time to present to the trauma centre, hypovolemic shock, multi-organ trauma and associated venous injuries. Conclusions: Penetrating missile trauma leading to vascular injuries has not been widely reported. Attempting limb salvage even in cases with delayed presentation should be weighed with the threat to life before revascularisation and should preferably be done at a centre with vascular expertise. A team approach with vascular, orthopaedic, general surgeons, and critical care anaesthesiologists all aboard improve the outcomes manifold. Use of tourniquets and early fasciotomies have been emphasized as is the use of native veins as the bypass conduit. This is probably the largest study on penetrating Vascular trauma in anti-terrorism ops from the Indian subcontinent. It highlights the significance of prompt recognition and availability of vascular expertise in optimally managing cases of vascular trauma.

A Study on Establishment of Performance-Based Design Direction through Analysis of Expert Survey (전문가 설문조사를 통한 국내 성능위주설계 개선 방향설정에 관한 연구)

  • Jeong, Hye-Min;Hong, Won-Hwa;Son, Jong-Yeong;Jeon, Gyu-Yeob
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.2
    • /
    • pp.23-31
    • /
    • 2018
  • In recent years, as the development of construction technology and population increase, buildings are becoming more complex and high-rise. These large scale buildings are difficult to secure fire and evacuation safety when fire occurs. So it is necessary to prepare specific measures. According to this situation, in 2011, Republic of Korea officially launched Performance-based Design in "Fire-fighting system Installation business Act". But even 6 years passed since the enforcement, there are still faces manifold problems in the course of implementation. In order to examine the necessary improvements, in this study, I conducted interviews and questionnaires with experts, investigated the improvement items under current laws. And draw up a measures for that items. The subjects of the survey were fire-fighting officer, professional engineer fire fighting, fire protection planner and professor in Daegu. As a result of twice surveys, a total of 19 items are derived. And then compared and analyzed the criteria of overseas countries, and suggested improvement directions for final items. In addition, conducted a third questionnaire survey on the proposed improvement direction to verify the appropriateness of the alternative. The results of this study will be used as basic data to deal with the general problems of performance-based design in future, and further study on each item will be needed.

Design of Seat Belt Pretensioner driven by Elastic Force (탄성력 기반 안전벨트 프리텐셔너 설계)

  • Yongsu Lee;Seyun Park;Hyuneun Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.545-550
    • /
    • 2023
  • A pretensioner is a safety device that protects occupants by pulling the seat belt in the event of a vehicle collision. However, since the pretensioner is driven by a explosive method, it is necessary to replace not only the gas generator but also all connecting parts including the manifold after an accident. Therefore, in this paper, we propose an elastic force-based pretensioner that can be used safely and semi-permanently. After analyzing the operating mechanism of the existing pretensioner from a thermodynamic/dynamic point of view, the spring stiffness that can be deployed within an appropriate operating time was determined by converting the gas explosion energy into elastic energy. In addition, the coil spring shape that satisfies the elastic stiffness was designed in consideration of the vehicle interior installation standard. Finally, the operating performance of the pretensioner driven by elastic force was verified through fabrication.

Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction (시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.5-17
    • /
    • 2023
  • The advancement in large-scale underground excavation in urban areas necessitates monitoring and predicting technologies that can pre-emptively mitigate risk factors at construction sites. Traditionally, two methods predict the deformation of retaining walls induced by excavation: empirical and numerical analysis. Recent progress in artificial intelligence technology has led to the development of a predictive model using machine learning techniques. This study developed a model for predicting the deformation of a retaining wall under construction using a boosting-based algorithm and an ensemble model with outstanding predictive power and efficiency. A database was established using the data from the design-construction-maintenance process of the underground retaining wall project in a manifold manner. Based on these data, a learning model was created, and the performance was evaluated. The boosting and ensemble models demonstrated that wall deformation could be accurately predicted. In addition, it was confirmed that prediction results with the characteristics of the actual construction process can be presented using data collected from ground measurements. The predictive model developed in this study is expected to be used to evaluate and monitor the stability of retaining walls under construction.

Nitrous oxide splurge in a tertiary health care center and its environmental impact: No more laughing stock

  • Amit Sharma;GD Puri;Rajeev Chauhan;Ankur Luthra;Gauri Khurana;Amarjyoti Hazarika;Shyam Charan Meena
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2024
  • Background: Nitrous oxide has been an integral part of surgical anesthesia for many years in the developed world and is still used in developing countries such as India. The other main concerns in low-resource countries are the lack of an advanced anesthesia gas-scavenging system and modular surgical theatres. As a greenhouse gas that has been present in the atmosphere for more than 100 years and damages the ozone layer, nitrous oxide is three times worse than sevoflurane. Here, we conducted an observational study to quantify the annual nitrous oxide consumption and its environmental impact in terms of carbon dioxide equivalence in one of busiest tertiary health care and research centers in Northern India. Methods: Data related to nitrous oxide expenditure' from the operation theatre and manifold complex of our tertiary care hospital and research center from 2018 to 2021 were collected monthly and analyzed. The outcomes were extracted from our observational study, which was approved by our institutional ethics board (INT/IEC/2017/1372 Dated 25.11.2017) and registered prospectively under the Central Registry (CTRI/2018/07/014745 Dated 05.07.2018). Results: The annual nitrous oxide consumption in our tertiary care hospital was 22,081.00, 22,904.00, 17,456.00, and 18,392.00 m3 (cubic meters) in 2018, 2019, 2020, and 2021, respectively. This indicates that the environmental impact of nitrous oxide (in terms of CO2 equivalents) from our hospital in 2018, 2019, 2020, and 2021 was 13,016.64, 13,287.82, 10,289.94, and 10,841.24 tons, respectively. Conclusion: This huge amount of nitrous oxide splurge is no longer a matter of laughter, and serious efforts should be made at every central and peripheral health center level to reduce it.

Evaluation of Long Term Operation of Cross-flow Molten Carbonate Fuel Cell Stack (교차류형 100W급 용융탄산염 연료전지 스택 장기운전평가)

  • Lim, H.C.;Seol, J.H.;Ryu, C.S.;Lee, C.W.;Hong, S.A.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • A 100kW class stack consisting of 10 molten carbonate fuel cells has been fabricated. Internally manifold stack has been tested for endurance. Each cell in the stack had an electrode area of $100cm^2$ and reactant gases were distributed in each cells in a cross-flow configuration. Initial and long term operation performance of the stack was investgated as a function of gas utilization using a specially designed small scale stack test facility. It was possible to have a stack with an output of more than 100W using an anode gas of 72% $H_2/18%$ $CO_2/10%H_2O$ and cathode gas of 33% $O_2/67%$ $CO_2$ and 70% Air 30% $CO_2$. The output and voltage of the stack at a current 15A($150mA/cm^2$) and gas utilization of 0.4 showed 125.8W and 8.39V respectively by elapsed time of 310 hours operation. In long term operation characteristics, the voltage drop of 52.4mV/1000hour was observed after more than 1,840 hours operation. Among the voltage drop, the OCV loss was highest than other voltage loss such as internal resistance and electrode polarization. Non uniformity of 2voltages and degradation of cell voltage in the stack was observed in according to changing the utilization rate after a long term operation. Further work for increasing the performance prolonging the life of the stack are required.

  • PDF

R&D Funding and R&D Performance : The Moderating Effect of Indirect R&D Cost Ratio (연구비 재원과 연구개발성과 : 간접비 비율의 조절효과를 중심으로)

  • Lee, Joonbeom
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.1
    • /
    • pp.420-453
    • /
    • 2018
  • In the growth of the government's investment in national R&D project and the abuse of research expense, an effective control and management mechanism is strongly demanded. However, an excessive regulation might hinder the R&D performance, which also endangers the underlying objective of R&D policy. Especially, an excessive regulation on the R&D expenditure may damage the SMEs (Small and Medium sized Enterprises) where securing an adequate level of R&D funding is vital. This study investigates the R&D funding and R&D performance of SMEs participating in the national R&D project by using fixed effect panel model. As a result, this paper reveals the effectiveness of 'Government R&D subsidy'. However, that of 'private R&D fund' is not supported strongly. Also, this paper empirically demonstrates the efficiency of both 'Government R&D subsidy' and 'Private R&D fund' as the R&D costs are spent discretionarily (as the degree of 'Indirect Cost Ratio' increases). Especially, the effectiveness of 'Private R&D fund' can be moderated by 'Indirect Cost Ratio'. On the basis of the conclusions, this paper draws an implication that can increase R&D performance of SMEs through the interactions of manifold administrative values (i.e. effectiveness, efficiency and responsibility).

Analysis on Volumetric Efficiency and Torque Characteristics Using Inlet Port Pressure in SI Engines (흡기포트압력을 이용한 SI엔진의 체적효율 및 토크 성능 분석)

  • 이영주;홍성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1408-1418
    • /
    • 1992
  • The valve timing and intake system in SI engine is chosen in order to get the maximum performance at the target rpm. This is a compromise and the performance reduction is expected in a certain rpm range. Therefore, to accomplish the possible engine capacity all over the operation ranges, it is required to investigate the effects of intake system and valve timing on engines more thoroughly. In this paper, it was attempted to examine closely the combined effects on the torque and the volumetric efficiency due to the change of valve timing and intake system dimensions. For this, the inlet port pressure was chosen as a primary parameter to represent engine performance characteristics together with surge tank pressure and induction pressure as secondaries. The inlet port pressure was analyzed in connection with both the secondaries and the performance data. Especially the relation between the inlet port pressure and the torque and volumetric efficiency was investigated on the operating conditions. In this experiment, it was acquired that the performances at specific rpm range could be improved by the combinations of valve timing and intake system. Then it was verified that pressure at a intake system contained useful data for the engine performance. By the analysis of inlet port pressure with the others, it was obtained that the properties of the torque and the volumetric efficiency due to the change of valve timing and intake conditions were able to be defined by the average and the maximum inlet port pressures, the pressure near before the intake valve closing(IVC) point as well as the pressure at IVC point during the intake valve opening duration. These results could be applied to almost all over the experimental conditions.

Spherical-Coordinate-Based Guiding System for Automatic 3D Shape Scanning (3D 형상정보 자동 수집을 위한 구면좌표계식 스캐닝 시스템)

  • Park, Sang Wook;Maeng, Hee-Young;Lee, Myoung Sang;Kwon, Kil Sun;Na, Mi-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1029-1036
    • /
    • 2014
  • Several types of automatic 3D scanners are available for use in the 3D scanning industry, e.g., an automatic 3D scanner that uses a robot arm and one that uses an automatic rotary table. Specifically, these scanners are used to obtain a 3D shape using automatic assisting devices. Most of these scanners are required to perform numerous operations, such as merging, aligning, trimming, and filling holes. We are interested in developing an automatic 3D shape collection device using a spherical-coordinate-based guiding system. Then, the aim of the present study is to design an automatic guiding system that can automatically collect 3D shape data. We develop a 3D model of this system and measuring data which are collected by a personal computer. An optimal design of this system and the geometrical accuracy of the measured data are both evaluated using 3D modeling software. The developed system is then applied to an object having a highly complex shape and manifold sections. Our simulation results demonstrate that the developed system collects higher-quality 3D data than the conventional method.