• Title/Summary/Keyword: manganese sand

Search Result 36, Processing Time 0.024 seconds

Effect of Experimental Factors on Manganese Removal in Manganese Sand Filtration (망간모래여과공정에서 망간제거에 미치는 영향인자)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.86-93
    • /
    • 2006
  • In the drinking water treatment, the aesthetic and color problem are caused by the manganese which is occurring and present in the surface, lake and ground water. The most common treatment processes for removing manganese are known for oxidation followed by filtration. In this study, the manganese sand process was used for removing manganese with river bank filtrate as a source. In the manganese sand process, the residual chlorine and pH are important factors on the continuous manganese oxidation. In addition, space velocity (SV) and alum dosage are play a role of manganese removal. Even though manganese removal increased with increasing chlorine concentration, the control of residual chlorine is actually difficult in this process As the results of tests, the residual chlorine concentration as well as manganese removal were effectively achieved at pH 7.5. The optimum attached manganese concentration on manganese sand was confirmed to 0.3mg/L by the experimental result of a typical sand converting to manganese sand.

The study of manganese removal mechanism in aeration-sand filtration process for treating bank filtered water (강변여과수 처리를 위한 포기-모래여과공정에서 망간제거 기작에 관한 연구)

  • Choi, Seung-Chul;Kim, Se-Hwan;Yang, Hae-Jin;Lim, Jae-Lim;Wang, Chang-Keun;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.341-349
    • /
    • 2010
  • It is well known that manganese is hard to oxidize under neutral pH condition in the atmosphere while iron can be easily oxidized to insoluble iron oxide. The purpose of this study is to identify removal mechanism of manganese in the D water treatment plant where is treating bank filtered water in aeration and rapid sand filtration. Average concentration of iron and manganese in bank filtered water were 5.9 mg/L and 3.6 mg/L in 2008, respectively. However, their concentration in rapid sand filtrate were only 0.11 mg/L and 0.03 mg/L, respectively. Most of the sand was coated with black colored manganese oxide except surface layer. According to EDX analysis of sand which was collected in different depth of sand filter, the content of i ron in the upper part sand was relatively higher than that in the lower part. while manganese content increased with a depth. The presence of iron and manganese oxidizing bacteria have been identified in sand of rapid sand filtration. It is supposed that these bacteria contributed some to remove iron and manganese in rapid sand filter. In conclusion, manganese has been simultaneously removed by physicochemical reaction and biological reaction. However, it is considered that the former reaction is dominant than the latter. That is, Mn(II) ion is rapidly adsorbed on ${\gamma}$-FeOOH which is intermediate iron oxidant and then adsorbed Mn(II) ion is oxidized to insoluble manganese oxide. In addition, manganese oxidation is accelerated by autocatalytic reaction of manganese oxide. The iron and manganese oxides deposited on the surface of the sand and then are aged with coating sand surface.

Soluble Manganese Removal Using Manganese Oxide Coated Media (MOCM) (산화망간피복여재를 이용한 용존망간 제거)

  • Kim, Jinkeun;Jeong, Sechae;Ko, Suhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.813-822
    • /
    • 2006
  • Soluble manganese removal was analyzed as a function of filter media, filter depth, presence or absence of chlorination, and surface manganese oxide concentration in water treatment processes. Sand, manganese oxide coated sand (MOCS), sand+MOCS, and granular activated carbon(GAC) were used as filter media. Manganese removal, surface manganese oxide concentration, turbidity removal, and regeneration of MOCS in various filter media were investigated. Results indicated that soluble manganese removal in MOCS was rapid and efficient, and most of the removal happened at the top of the filter. When filter influent (residual chlorine 1.0mg/L) with an average manganese concentration of 0.204mg/L was fed through a filter column, the sand+MOCS and MOCS columns can remove 98.9% and 99.2% of manganese respectively on an annual basis. On the other hand, manganese removal in sand and the GAC column was minimal during the initial stage of filtration, but after 8 months of filter run they removed 99% and 35% of manganese, respectively. Sand turned into MOCS after a certain period of filtration, while GAC did not. In MOCS, the manganese adsorption rate on the filter media was inversely proportional to the filter depth, while the density of media was proportional to the filter depth.

Removal of High Concentration Manganese in 2-stage Manganese Sand Filtration (2단 망간모래여과에 의한 고농도 망간 처리)

  • Kim, Chung H.;Yun, Jong S.;Lim, Jae L.;Kim, Seong S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 2007
  • Small scale D-water treatment plant(WTP) where has slow sand filtration was using raw water containing high concentration of manganese (> 2mg/l). The raw water was pre-chlorinated for oxidation of manganese and resulted in difficulty for filtration. Thus, sometimes manganese concentration and turbidity were over the water quality standard. Two stage rapid manganese sand filtration pilot plant which can treat $200m^3/d$ was operated to solve manganese problem in D-WTP. The removal rate of manganese and turbidity were about 38% and 84%, respectively without pH control of raw water. However, when pH of raw water was controlled to average 7.9 with NaOH solution, the removal rate of manganese and turbidity increased to 95.0% and 95.5%, respectively and the water quality of filtrate satisfied the water quality standard. Manganese content in sand was over 0.3mg/g which is Japan Water Association Guideline. The content in upper filter was 5~10 times more than that of middle and lower during an early operation but the content in middle and lower filter was increased more and more with increase of operation time. This result means that the oxidized manganese was adsorbed well in sand. Rapid manganese sand filter was backwashed periodically. The water quality of backwash wastewater was improved by sedimentation. Thus, turbidity and manganese concentration decreased from 29.4NTU to 3.09NTU and from 1.7mg/L to 0.26mg/L, respectively for one day. In Jar test of backwash wastewater with PAC(Poly-aluminum chloride), optimum dosage was 30mg/L. Because the turbidity of filtrate was high as 0.76NTU for early 5 minute after backwash, filter-to-waste should be used after backwash to prevent poor quality water.

A Study on Operation of Sand Filters Coated with Manganese (망간사화된 모래여과지 운영에 관한 연구)

  • Jeong, Se-Chae;Ko, Su-Hyun;Kim, Jin-Keun;Yoo, Jeong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.558-562
    • /
    • 2006
  • Filtration experiments were conducted to determine the characteristics of manganese removal in filtration using 4 different filter media including sand and manganese sand(MS). Filtration velocity was 123 m/d and the flow rate was $3.9m^3/d$ per column. Duration of these experiments was about one year, and manganese dioxide accumulation, turbidity removal, manganese removal, and organic material removal were examined depending on filter media. When filter influent(residual chlorine 1.0 mg/L) with an average manganese concentration of 0.208 mg/L was fed through a filter column, the sand+MS and MS columns removed 98.9% and 99.2% of manganese respectively on an annual basis. When there is need to replace the sand filters with a MS filter to remove manganese, it was shown that the replacement of a partial sand filter with MS had adequate manganese removal.

Removal of Manganese(II) from Aqueous Solution Using Manganese Coated Media (망간코팅 여재를 이용한 수용액상의 망간 제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.454-459
    • /
    • 2010
  • This study investigated the applicability of manganese coated media such as manganese coated sand (MCS), manganese coated sericite (MCSe) and manganese coated starfish material calcined at $550^{\circ}C$ (MCSf) to remove Mn(II) in synthetic wastewater. Manganese coated media prepared at different pH was applied in the treatment of soluble Mn(II) in batch and column experiments at various Mn(II) concentrations. The amount of Mn coated on three different media was approximately 800~1100 mg/kg. From the stability test, negligible dissolution of Mn was observed above pH 3.0. In batch test, more than 40% of Mn(II) was removed by all sand media at various manganese concentrations. In order to see the effect of additional oxidant for the removal of Mn(II), 4 mg/L of hypochlorite was added in Mn(II) solution during column experiment. Breakthrough of Mn(II) was greatly retarded in the presence of hypochlorite in all column reactors packed with different media. Among the manganese coated media, MCSf prepared at pH 4 indicated the highest removal capacity. The removal efficiency of Mn(II) was also increased in the multi-layer system (0.5 g of MCS, MCSe, and MCSf each).

Manganese Removal of Bank Filtrate using Manganese Sand Filtration (망간모래여과를 이용한 강변여과수의 망간제거)

  • Kim, Chung-Hwan;Kim, Hak-Chul;Kim, Han-Seung;Kim, Berm-Soo;Ahn, Hyo-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.409-414
    • /
    • 2004
  • Pilot-scale experiments were performed for the treatment of bank filtrate contammg high manganese concentration around 2mg/L using rapid manganese sand filtration to investigate effects of oxidant dose and pH control on the removal efficiency of manganese. For theoretical dose ranges of oxidant (sodium hypochlorite) between 3 and 4mg/L, the manganese concentration of effluent was 0.57 mg/L, which corresponded to 72.5% removal and was higher than drinking water quality standards of 0.3mg/L. For excess dose ranges of oxidant between 4 and 8mg/L, the manganese concentration of effluent was reduced to 0.14mg/L, which corresponded to 94.5% removal, but the residual chlorine concentration was over 1.0mg/L. On the other hand, manganese removal efficiency drastically increased up to the value of 98.0%, which is equivalent to the effluent concentration of 0.03mg/L by controling pH to the range between 7 and 8 for the theoretical dose of oxidant. Consequently, these results indicated that appropriate dose of chemicals, such as oxidant and alkali, and continuous monitoring of manganese should be necessary to obtain efficient removal of manganese and to optimize the maintenance of treatment facilities for the treatment of bank filtrate with high concentration of manganese.

Immobilized Small Sized Manganese Dioxide Sand in the Remediation of Arsenic Contaminated Water

  • Tiwari, Diwakar;Laldawngliana, C.;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.107-113
    • /
    • 2014
  • Small sized manganese dioxide particles are immobilized onto the surface of sand by the wet impregnation process. The surface morphology of the solid, i.e., immobilized manganese dioxide natural sand (IMNS) is performed by taking scanning electron microscope images and characterized by the X-ray diffraction data. The specific surface area of the solid is obtained, which shows a significant increase in the specific surface area obtained by the immobilization of manganese dioxide. The $pH_{PZC}$ (point of zero charge) is found to be 6.28. Further, the IMNS is assessed in the removal of As(III) and As(V) pollutants from aqueous solutions under the batch and column operations. Batch reactor experiments are conducted for various physicochemical parametric studies, viz. the effect of sorptive pH (pH 2.0-10.0), concentration (1.0-25.0 mg/L), and background electrolyte concentrations (0.0001-0.1 mol/L $NaNO_3$). Further, column experiments are conducted to obtain the efficiency of IMNS under dynamic conditions. The breakthrough data obtained by the column experiments are employed in non-linear fitting to the Thomas equation, so as to estimate the loading capacity of the column for As(III) and As(V).

Evaluation of the Removal Properties of Mn(II) by Manganese-Coated Sand (망간사에 의한 망간제거 특성 평가)

  • Yu, Mok-Ryun;Yang, Jae-Kyu;Kim, Mu-Nui;Lee, Seung-Mok;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.571-576
    • /
    • 2007
  • Manganese-Coated Sand(MCS) prepared with three different methods were applied in the treatment of soluble $Mn^{2+}$ in batch and column experiments. In the bench-scale MCS preparation, the coating efficiency of manganese on the surface of sand increased as the dosage of initial Mn(II) increased. The removed amount of the soluble $Mn^{2+}$ by MCS increased as the solution pH increased, following a typical anionic-type adsorption. The removed amounts of the soluble $Mn^{2+}$ through adsorption was quite similar over the entire pH range, without depending on the contents of Mn on the surface of sand as well as coating methods. When NaClO was used an oxidant, the removed amount of the soluble $Mn^{2+}$ by MCS increased as the concentration of NaClO increased, This trend might be explained by the increased removal efficiency through coating of manganese oxides produced from oxidation of the soluble $Mn^{2+}$ by NaClO on the surface of MCS. From the bench-scale column experiments, the breakthrough of $Mn^{2+}$ occurred after 4,100 bed volume without presence of NaClO while 1.6-times delayed breakthrough of $Mn^{2+}$ was observed in the presence of NaClO. This result also supports that the removal efficiency of the soluble $Mn^{2+}$ could be enhanced by using NaClO.

Biological Manganese Removal in Water Treatment (정수처리에서 생물학적 망간처리)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2006
  • Bio-filtration processes using honeycomb tubes (process 1) and aeration and manganese-sand filtration (process 2) were evaluated for the biological manganese removal efficiency. The concentration of manganese at effluent was stabilized after 20days operation in process 1. It was estimated the required time for attaching and growing microorganisms to honeycomb tubes. In long term of operation periods, manganese removal efficiency was dropped for the excessively attached biofilm and manganese dioxide to honeycomb tubes. It took several days for normal operation in process 2, after that manganese removal efficiency was increased to 98% and stabilized for 1.5 years. Microorganisms in process 1 and 2 were isolated and cultured to characterize manganese-oxidizing bacteria. Among the four types of colony, light brown colony was turned blue color by leuco crystal violet spot test. Stenotropomonas genus, known as manganese-oxidizing bacteria, was identified by 16S rDNA partial sequencing analysis which was isolated in process 1 and 2. For the biological treatment to remove manganese, these two considerations are important. One is to choose the proper media attaching manganese oxidant, another one is to define the cultural condition of isolated manganese-oxidizing bacteria.