• Title/Summary/Keyword: manganese powder

Search Result 83, Processing Time 0.034 seconds

A Novel Process for Recovery of Key Elements from Commercial Cathode Material of End-of-Life Lithium-Ion Battery

  • Jei-Pil Wang
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.3
    • /
    • pp.745-750
    • /
    • 2021
  • A novel process to recover lithium and manganese oxides from a cathode material (LiMn2O4) of spent lithium-ion battery was attempted using thermal reaction with hydrogen gas at elevated temperatures. A hydrogen gas as a reducing agent was used with LiMn2O4 powder and it was found that separation of Li2O and MnO was taken place at 1050℃. The powder after thermal process was washed away with distilled water and only lithium was dissolved in the water and manganese oxide powder left behind. It was noted that manganese oxide powder was found to be 98.20 wt.% and the lithium content in the solution was 1,928 ppm, respectively.

The Properties of Aluminium Alloy Powder for Aluminothermy Process with $Mn_3O_4$ Waste Dust ($Mn_3O_4$ 분진의 Al 테르밋 반응용 Al 합금분말의 특성)

  • Kim, Youn-Che;Song, Youn-Jun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • Aluminium powder as reductant in aluminothermy process needs a fine particle size under 200 mesh, but it is not easy economically to make that because of its high ductility and powder production cost. In order to reduce the production cost of fine aluminum powder as reductant of $Mn_3O_4$ waste dust, therefore, the properties of aluminium alloy powder were investigated. Aluminium alloy ingot containing large amount of manganese can be crushed easily because of its intermetallic compounds having brittle properties. The manganese is also main element in ferro-manganese. We can obtain economically Al-15%Mn alloy powder by mechanical comminution process. And the result of thermite reaction using Al-15% Mn alloy powder instead of pure Al powder showed the fact that can be obtained the ferro-manganese which have a high purity in case of using pure aluminium powder as reductant. The recovery of manganese from $Mn_3O_4$ waste dust with Al-15%Mn alloy powder was higher level of about 70% than about 65% in case of using aluminium powder, that is due to lower spatter loss.

Preparation of high Purity manganese oxide by Pyrolysis of solution extracted from ferromanganese dust in AOD process

  • Lee, Gye-Seung;Song, Young-Jun;Kim, Mi-Sung;Shin, Kang-Ho;Cho, Dong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.409-412
    • /
    • 2001
  • The high purity manganese oxides were made from the dust, generated in AOD process that produces a medium-low carbon ferromanganese and collected in the bag filter. Manganese oxide content in the dust was about 90%, and its phase was confirmed as Mn₃O₄. In the extraction of manganese, because of remaining amorphous MnO₂, the dust was reduced to MnO by roasting with charcoal. The pulp density of the reduced dust can control pH of the solution more than 4 and then Fe ion is precipitated to a ferric hydroxide. Because a ferric hydroxide co precipitates with Si ion etc, Fe, Si ion was removed f개m the solution. Heating made water to be volatized and nitrates was left in reactor Then nitrates were a liquid state and stirring was possible. Among the nitrates in reactor, only the manganese nitrate which have the lowest pyrolysis temperature pyrolyzed into β-MnO₂powder and NO₂(g) at the temperature less than 200℃. When the pyrolysis of manganese nitrate has been completed about 90%, injection of water stopped the pyrolysis. Nitrates of impurity dissolved and the spherical high purity β-MnO₂powders were obtained by filtering and washing. Mn₂O₃or Mn₃O₄ powder could be manufactured from β-MnO₂powder by controlling the heating temperature. Lastly, a manufactured manganese oxide particle has 99.97% purity.

  • PDF

Recycling of Ferro-manganese Furnace Dust Collected from Converter (페로망간 집진분(集塵粉)의 재활용(再活用)에 관한 연구(硏究))

  • Kim, Youn-Che;Song, Young-Jun;Park, Young-Koo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.21-27
    • /
    • 2012
  • In order to make high-purity ferro-manganese from $Mn_3O_4$ dust, the application of aluminothermy process to the reduction of $Mn_3O_4$ dust was investigated in previous work. The result showed the fact that can be obtained high purity ferro-manganese which have over about 93% of manganese content and lower impurities such as C, P, S than those of KS D3712 specification. The addition of silicon powder instead of aluminum powder was investigated as reductant in the thermite reaction process of $Mn_3O_4$ dust in this work because its production cost is lower than that of aluminum powder. In case of addition of silicon powder only as reductant, the experimental result showed the unstable ignition and no thermite reaction of mixture, but in case of simultaneous addition of silicon and aluminum powders as reductant, showed the fact that can be obtained high purity ferro-manganese which have much low content of impurities such as C, P, S component.

Synthesis of Functional Complex Material from Spent Alkaline Manganese Battery (폐(廢)알칼리망간전지(電池)로부터 기능성(機能性) 복합소재(複合素材) 제조(製造))

  • Kim, Tae-Hyun;Lee, Seoung-Won;Sohn, Jeong-Soo;Kang, Jin-Gu;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • Fundamental studies for the synthesis of Mn-Zn ferrite powder were investigated using a series of leaching and coprecipitation processes from spent alkaline manganese batteries. Zinc and Manganese dissolution rates obtained at the reaction conditions of 100g/L pulp density, 3.0M $H_2SO_4$, $60^{\circ}C$ and 200 rpm with 30 ml $H_2O_2$ as a reducing agent were more than 97.9% and 93.9% and coprecipitation of Mn-Zn ferrite powder was performed according to various reaction conditions such as temperature, time and amount of $O_2$ gas injection using the leaching solution. As a result of coprecipitation, Mn-Zn ferrite could be synthesized directly at low temperature in the reaction condition pH 12, $80^{\circ}C$, $O_2$ 1.3 L/min. and 400 rpm. The synthesized Mn-Zn ferrite powder was spherical powder of $0.143{\mu}m$ particle size and had a saturation magnetization about 80 emu/g.

A Study on Making of High-Purity Ferro-manganese from $Mn_3O_4$ Waste Dust ($Mn_3O_4$ 분진으로부터 고순도 훼로망간 제조에 관한 연구)

  • Kim, Youn-Che;Song, Young-Jun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.135-139
    • /
    • 2011
  • In order to make high-purity ferro-manganese from $Mn_3O_4$ waste dust, the application of aluminothermite process to the reduction of the waste dust was investigated. The mixture from $Mn_3O_4$ dust as metallic source and Al metal powder as the reductant ignited, and reduced with an extremely intense exothermic reaction. The rapid propagation of the aluminothermite reaction occurred spontaneously and stably by ignition of the mixture. The Manganese having some alloy elements emerged as liquids due to the high temperatures reached up to about $2,500^{\circ}C$ and separated from the liquid by their differences of specific gravity. The result of thermite reaction showed the fact that can be obtained high purity ferro-manganese which have over about 90% of manganese content and lower impurities such as C, P, S than those of KS D3712 specification. The recovery of manganese from $Mn_3O_4$ dust was lower level of about 65% than about 75% from manganese ore by electric furnace process, that is due to spatter loss because of its extremely intense thermite reaction. But it will be improved by the process designed to provide CaO as the cooler or to use the Al metal powder having larger particle size distribution.

Refining of Manganese from Anode Slime of Electrolytic Zinc and Waste Dry Cell (전해아연의 Anode Slime과 건전지의 폐기물로부터 금속망간의 회수)

  • Yoon, Byoung-Ha;Kim, Dai-Ryong
    • Journal of Surface Science and Engineering
    • /
    • v.19 no.1
    • /
    • pp.13-19
    • /
    • 1986
  • Manganese in the Anode slime and the paste-positive material of waste-dry cell was recovered by leaching with the hydrochloric acid solution. The impurities (Zn, Fe, Pb), co-leached with manganese were removed from the leached solution prior to electrolysis by hydrometallurgical techniques such as the neutralization with ammonium hydroxide and cementation on manganese powder. The electrodeposition of manganese from the purified chloride solution with sodium selenate was performed. Cathode current efficiency was found to be affected significantly by the concentration of sodium selenate and ammonium chloride salt, bath temperate, current density and PH. The current efficiency of about 88.7% was obtained by electrolysis manganese chloride solution with sodium selenate (0.1/g) at 10$^{\circ}C$.

  • PDF

Electrochemical Properties of MnO$_2$electrode for supercapactor wish a Diffuser (Polyvinylalcohol) (분산제 PVA에 따른 수퍼커패시터용 이산화망간전극의 전기 화학적 특성)

  • 이상오;김한주;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.753-756
    • /
    • 2001
  • This research made a study of MnO$_2$electrode for supercapacitor with a diffuser (Polyvinyl alcohol). Manganese dioxide was used as active material. We tried to increase specific surface area by adding PVA. Manganese dioxide was synthesized by a sol-gel method using fumaric acid and oxalic acid in low temperature with high yield. Therefore, We prepared Manganese dioxide powder. This powder was used by active materials. The electrode was made by a mixture of active material, ketjen-black which is a large specific surface area, and PVdF-co-HFP as binder agent with using Nickel mesh as current collector. Here we reported on the synthesis and electrochemical performance of a enhanced material. All active materials have been submitted to X-ray diffraction and Scanning electron microscopy.

  • PDF

Hardenability of Low Alloy Sintered Mn Steels

  • Zendrona, Marianna;Molinari, Alberto;Girardini, Luca
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.834-835
    • /
    • 2006
  • Manganese is an alloying element that improves the hardenability of steels. It could be a valid substitute in sintered steels, increasing mechanical properties. The hardenability of three low alloy Mn steels was studied to establish the influence of manganese on the heat treatments. The Grossmann approach was adopted, which uses cylinders with different diameters to induce different gradients of cooling rate in the cross section. The correlation of microstructure and microhardness to the actual cooling rate makes the results independent on the process parameters and applicable to each industrial condition, once the actual cooling rate in the parts is known.

  • PDF