• Title/Summary/Keyword: manganese

Search Result 1,638, Processing Time 0.033 seconds

Effect of Experimental Factors on Manganese Removal in Manganese Sand Filtration (망간모래여과공정에서 망간제거에 미치는 영향인자)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.86-93
    • /
    • 2006
  • In the drinking water treatment, the aesthetic and color problem are caused by the manganese which is occurring and present in the surface, lake and ground water. The most common treatment processes for removing manganese are known for oxidation followed by filtration. In this study, the manganese sand process was used for removing manganese with river bank filtrate as a source. In the manganese sand process, the residual chlorine and pH are important factors on the continuous manganese oxidation. In addition, space velocity (SV) and alum dosage are play a role of manganese removal. Even though manganese removal increased with increasing chlorine concentration, the control of residual chlorine is actually difficult in this process As the results of tests, the residual chlorine concentration as well as manganese removal were effectively achieved at pH 7.5. The optimum attached manganese concentration on manganese sand was confirmed to 0.3mg/L by the experimental result of a typical sand converting to manganese sand.

Associations between Airborne Manganese and Blood Manganese in the Korean General Population according to KNHANES 2008-2009 (한국인의 혈중 망간농도와 공기중 망간농도의 관련성)

  • Jung, Kyung Sick;Lee, Jong Dae;Kim, Yong Bae
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1589-1598
    • /
    • 2013
  • The objective of this study was to evaluate associations between airborne manganese and blood manganese in a general population of South Korean adults. The concentrations of airborne manganese in total suspended particulate (TSP) were calculated from data obtained from ambient air-monitoring stations (AAMSs) located in South Korea. Blood manganese data obtained Korean National Health and Nutrition Examination Survey (KNHANES) using a rolling sampling design involving a complex, stratified, multistage, probability cluster survey of a representative sample of the non-institutionalized civilian population of South Korea. Airborne manganese geometric means was 46.10 $ng/m^3$, blood manganese geometric means were 1.19 ${\mu}g/d{\ell}$ for male and 1.40 ${\mu}g/d{\ell}$ for female. In multiple linear regression analysis of log transformed blood manganeseas a continuous variable on airborne manganese, after adjusting for covariates including gender, age, job, smoking and drinking status, education level, BMI (body mass index). Airborne manganese was positively associated with blood manganese with statistical significance. The present study confirms that airborne manganese is a possible contributor to the increase of blood manganese in the adult general population.

Soluble Manganese Removal Using Manganese Oxide Coated Media (MOCM) (산화망간피복여재를 이용한 용존망간 제거)

  • Kim, Jinkeun;Jeong, Sechae;Ko, Suhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.813-822
    • /
    • 2006
  • Soluble manganese removal was analyzed as a function of filter media, filter depth, presence or absence of chlorination, and surface manganese oxide concentration in water treatment processes. Sand, manganese oxide coated sand (MOCS), sand+MOCS, and granular activated carbon(GAC) were used as filter media. Manganese removal, surface manganese oxide concentration, turbidity removal, and regeneration of MOCS in various filter media were investigated. Results indicated that soluble manganese removal in MOCS was rapid and efficient, and most of the removal happened at the top of the filter. When filter influent (residual chlorine 1.0mg/L) with an average manganese concentration of 0.204mg/L was fed through a filter column, the sand+MOCS and MOCS columns can remove 98.9% and 99.2% of manganese respectively on an annual basis. On the other hand, manganese removal in sand and the GAC column was minimal during the initial stage of filtration, but after 8 months of filter run they removed 99% and 35% of manganese, respectively. Sand turned into MOCS after a certain period of filtration, while GAC did not. In MOCS, the manganese adsorption rate on the filter media was inversely proportional to the filter depth, while the density of media was proportional to the filter depth.

A Study on the Blood Manganese Levels in Welding Workers

  • Lee, Mi-Hwa
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • The welding workers are frequently exposed to heavy metals such as manganese. Manganese is well evaporated into the air while welding. This study had been carried out to investigate the relationship of the blood manganese level to age, work duration, and smoking status among 128 welding workers in Gyeongnam and Jeonnam province from May to November, 2003. They showed high manganese level in the first health examination. Subjects were also classified for the investigation according to their smoking status as smokers and nonsmokers, work duration ($\leq$9, 10~9, 20$\leq$years), and ages ($\leq$29, 30~39, 40~49, 50$\leq$years). Blood manganese Jevels were analyzed by atomic absorption spectrophotometer (AAS). Mean blood manganese level was 1.62$\pm$0.56 $\mu\textrm{g}$/dl. In the comparison of blood manganese levels by age and smoking status, mean blood manganese levels of smokers in age of 20's, 30's, and 50's were 2.09$\pm$0.44 $\mu\textrm{g}$/dl, 1.94$\pm$0.33 $\mu\textrm{g}$/dl, and 2.l5$\pm$0.33 $\mu\textrm{g}$/dl, respectively. Blood manganese levels of smokers were significantly higher than those of non-smokers, showing no significant difference in the 40's. In the comparison of blood manganese levels by work duration, the blood manganese levels of smokers were the highest in the case of 10 to 19 years work duration. This study showed that the blood manganese levels were related to the smoking status, work duration, and age. Mean manganese levels of smokers showed higher than those of nonsmokers. It also showed that the length of work duration was related to the elevation of blood manganese levels. Among the welding workers, blood manganese levels of smokers were the highest over their age of 50's. In conclusion, smoking was the most significant risk factor to increase blood manganese levels. The further study will need analysis of the other factors related to manganese level elevation.

  • PDF

A Study on the Manganese Exposure and Health Hazard among Manganese Manufacturing Woman Workers (망간취급 여성근로자의 망간폭로 및 건강위해에 관한 연구)

  • Lim, Hyun-Sul;Kim, Ji-Yong;Cheong, Hae-Kwan;Cheong, Hoe-Kyung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.28 no.2 s.50
    • /
    • pp.406-420
    • /
    • 1995
  • To study the health hazards and exposure status of manganese among female manganese workers, authors conducted airborne, blood and urine manganese concentration measurements, questionnaire and neurological examinations on 80 manganese-handling productive female workers(exposed group) in a manganese manufacturing facto in Pohang city and 127 productive female workers not handling manganese(control group) in other factories in the Pohang city. The results are; 1. Geometric mean concentrations of manganese in air and urine were $0.98mg/m^3\;and\;4.12{\mu}g/l$ and arithmetic mean concentration of manganese in blood was $6.94{\mu}g/dl$ in exposed group, significantly higher than those of control group(p<0.05). However, clinical and laboratory findings in exposed group were not statistically different from those of control group. 2. As age increase, positive rates of clinical symptoms also increased in the exposed group. However, in older aged group, the positive rates of symptoms and signs were statistically different from those of control group. We observed the same tendency in the positive rates of the neurological examinations. 3. There was statistically significant correlation between airborne and urine manganese concentrations(r=0.61, p<0.01) while there was no statistically significant correlation between airborne and blood manganese concentrations(r=0.29, p>0.05). The results suggest that urine manganese concentration was the best appropriate biomarker to estimate the exposure to manganese in respect to clinical symptoms and signs. In the analysis of correlation between urine and airborne manganese concentrations, it is required to adjust the present permissible exposure level(PEL) of airborne manganese.

  • PDF

Biological Manganese Removal in Water Treatment (정수처리에서 생물학적 망간처리)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2006
  • Bio-filtration processes using honeycomb tubes (process 1) and aeration and manganese-sand filtration (process 2) were evaluated for the biological manganese removal efficiency. The concentration of manganese at effluent was stabilized after 20days operation in process 1. It was estimated the required time for attaching and growing microorganisms to honeycomb tubes. In long term of operation periods, manganese removal efficiency was dropped for the excessively attached biofilm and manganese dioxide to honeycomb tubes. It took several days for normal operation in process 2, after that manganese removal efficiency was increased to 98% and stabilized for 1.5 years. Microorganisms in process 1 and 2 were isolated and cultured to characterize manganese-oxidizing bacteria. Among the four types of colony, light brown colony was turned blue color by leuco crystal violet spot test. Stenotropomonas genus, known as manganese-oxidizing bacteria, was identified by 16S rDNA partial sequencing analysis which was isolated in process 1 and 2. For the biological treatment to remove manganese, these two considerations are important. One is to choose the proper media attaching manganese oxidant, another one is to define the cultural condition of isolated manganese-oxidizing bacteria.

Removal of High Concentration Manganese in 2-stage Manganese Sand Filtration (2단 망간모래여과에 의한 고농도 망간 처리)

  • Kim, Chung H.;Yun, Jong S.;Lim, Jae L.;Kim, Seong S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 2007
  • Small scale D-water treatment plant(WTP) where has slow sand filtration was using raw water containing high concentration of manganese (> 2mg/l). The raw water was pre-chlorinated for oxidation of manganese and resulted in difficulty for filtration. Thus, sometimes manganese concentration and turbidity were over the water quality standard. Two stage rapid manganese sand filtration pilot plant which can treat $200m^3/d$ was operated to solve manganese problem in D-WTP. The removal rate of manganese and turbidity were about 38% and 84%, respectively without pH control of raw water. However, when pH of raw water was controlled to average 7.9 with NaOH solution, the removal rate of manganese and turbidity increased to 95.0% and 95.5%, respectively and the water quality of filtrate satisfied the water quality standard. Manganese content in sand was over 0.3mg/g which is Japan Water Association Guideline. The content in upper filter was 5~10 times more than that of middle and lower during an early operation but the content in middle and lower filter was increased more and more with increase of operation time. This result means that the oxidized manganese was adsorbed well in sand. Rapid manganese sand filter was backwashed periodically. The water quality of backwash wastewater was improved by sedimentation. Thus, turbidity and manganese concentration decreased from 29.4NTU to 3.09NTU and from 1.7mg/L to 0.26mg/L, respectively for one day. In Jar test of backwash wastewater with PAC(Poly-aluminum chloride), optimum dosage was 30mg/L. Because the turbidity of filtrate was high as 0.76NTU for early 5 minute after backwash, filter-to-waste should be used after backwash to prevent poor quality water.

Mineralogical-geochemical Characteristics of Manganese Nodules in the Deep Subseafloor Sediments at Site U1371 in the Western South Pacific Gyre Area (남서태평양 환류지역 U1371 심부퇴적층에서 발견된 망가니즈단괴의 광물학적-지화학적 특성 연구)

  • Yang, Kiho;Jung, Jaewoo
    • Ocean and Polar Research
    • /
    • v.44 no.2
    • /
    • pp.139-145
    • /
    • 2022
  • Manganese nodules were recovered within the deep subseafloor sediments (118.22 mbsf) at Site U1371 during International Ocean Discovery Program (IODP) expedition 329 from the South Pacific Gyre (SPG). Because most manganese nodules exist on the seabed surface, nodules present in deep sediments are uncommon. Therefore, the growth origin of manganese nodules was identified through mineralogical and geochemical analyses. The manganese nodule was divided into the concentric layer outside the manganese region and the inner part of the phosphatized region consisting of manganese oxide minerals and carbonate fluorapatite (CFA) minerals, respectively. The two-dimensional element distribution analysis of Mn, Co, Ni, Sr and Cu, Zn with low Mn/Fe ratio confirmed that manganese nodules were formed predominantly by a hydrogenetic process and a biogenic process in certain manganese layers. As a result, the manganese nodule was continuously precipitated in SPG environments of oligotrophic open paleoocean conditions and rapidly buried with siliceous ooze sediments when the SPG changed to a eutrophic environment. It has been confirmed that manganese nodules found within deep subseafloor sediments could be used as a new proxy for the reconstruction of paleooceanographic conditions.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Manganese Removal in Water Treatment Processes (상수처리에서 망간 제거)

  • Kim, Jinkeun;Jeong, Sanggi;Kim, Jeongsook;Park, Sejin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.595-604
    • /
    • 2005
  • To determine the characteristics of manganese removal in Korea, 31 multi-regional water treatment plants (WTPs) were examined. The concentration of manganese in raw water was higher than the standards for drinking water at 2 WTPs. Manganese should be properly removed during water treatment processes to reduce the occurrence of black water in the distribution system because $Mn^{+2}$ can cause black deposits when it is oxidized. Manganese can effectively removed by oxidation, followed by sedimentation and filtration as well as absorption by greensand. Manganese absorption by greensand was the major mechanism for the removal of manganese, and it is effectively removed using this process. Regeneration of greensand using an oxidation agent was necessary for continuous and adequate removal of manganese.