• Title/Summary/Keyword: maneuvering target

Search Result 199, Processing Time 0.025 seconds

A DNA Coding-Based Interacting Multiple Model Method for Tracking a Maneuvering Target (기동 표적 추적을 위한 DNA 코딩 기반 상호작용 다중모델 기법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.497-502
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, a DNA coding-based interacting multiple model (DNA coding-based W) method is proposed. The proposed method can overcome the mathematical limits of conventional methods by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive IMM algorithm and the GA-based IMM method in computer simulations.

Design of Maneuvering Target Tracking System Using Data Fusion Capability of Neural Networks (신경망의 자료 융합 능력을 이용한 기동 표적 추적 시스템의 설계)

  • Kim, Haeng-Koo;Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.552-554
    • /
    • 1998
  • In target tracking problems the fixed gain Kalman filter is primarily used to predict a target state vector. This filter, however, has a poor precision for maneuvering targets while it has a good performance for non-maneuvering targets. To overcome the problem this paper proposes the system which estimates the acceleration with neural networks using the input estimation technique. The ability to efficiently fuse information of different forms is one of the major capabilities of trained multi-layer neural networks. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features can be utilized as inputs for estimating target maneuvers. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates. The features used as inputs can be extracted from the combinations of innovation data and heading changes, and for this we set the two dimensional model. The properly trained neural network system outputs the acceleration estimates and compensates for the primary Kalman filter. Finally the proposed system shows the optimum performance.

  • PDF

Maneuvering Target Tracking Using Modified Variable Dimension Filter with Input Estimation (수정된 가변차원 입력추정 필터를 이용한 기동표적 추적)

  • 안병완;최재원;황태현;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.976-983
    • /
    • 2002
  • We presents a modified variable dimension filter with input estimation for maneuvering target tracking. The conventional variable dimension filter with input estimation(VDIE) consists of the input estimation(IE) technique and the variable dimension(VD) filter. In the VDIE, the IE technique is used for estimation of a maneuver onset time and its magnitude in the least square sense. The detection of the maneuver is declared according to the estimated magnitude of the maneuver. The VD filter structure is applied for the adaptation to the maneuver of the target after compensating the filter parameter with respect to the estimated maneuver when the detection of the maneuver is declared. The VDIE is known as one of the best maneuvering target tracking filter based on a single filter. However, it requires too much computational burden since the IE technique is performed at every sampling instance and thus it is computationally inefficient. We propose another variable dimension filter with input estimation named 'Modified VDIE' which combines VD filter with If technique. Modified VDIE has less computational load than the original one by separating maneuver detection and input estimation. Simulation results show that the proposed VDIE is more efficient and outperforms in terms of computational load.

Intelligent Tracking Algorithm for Maneuvering Target (지능형 추적 알고리즘)

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.499-501
    • /
    • 2005
  • When the target maneuver occurs, the estimate of the standard Kalman filter is biased and its performance may be seriously degraded. To solve this problem, this paper proposes a new intelligent estimation algorithm for a maneuvering target. This algorithm is to estimate the unknown target maneuver by a fuzzy system using the relation between the filter residual and its variation. The detected acceleration input is regarded as an additive process noise. To optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. And then, the modified filter is corrected by the new update equation method using the fuzzy system. The tracking performance of the proposed method is compared with those of an interacting multiple model (IMM).

  • PDF

Maneuvering Target Tracking with the Modified VDIE Filter

  • Ahn, Byeong-Wan;Whang, Tae-Hyun;Choi, Jae-Won;Song, Taek-Lyul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.6-53
    • /
    • 2001
  • In this paper, we are concerned with a tracking filter algorithm which can track a maneuvering target. Among the novel tracking filter algorithms, the input estimation (IE) filter can be summarized as estimating the unknown maneuver input and compensating the state according to the estimated input, and the variable dimension filter (VDF) can be summarized as detecting the maneuver of target and changing the dimension of the target dynamics to accomodate the maneuver of target They have some goods and bads with respect to each other. The variable dimension filter with input estimation (VDIEF) is constructed by combining the two filtering algorithms. However, it requires too much computational burden while it has good performance. We propose another variable dimension with input estimation ...

  • PDF

Performance Analysis of Conventional and Modified Proportional Navigation Guidance Laws for a Random Maneuvering Targeta (임의의 방향조정을 하는 목표물에 대한 비례항법 및 수정비례항법의 성능분석)

  • 하인중;허종성;고명삼;이장규;송택렬;안조영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.597-602
    • /
    • 1988
  • In this paper, we consider conventional and modified proportional navigation guidance(PNG) laws for a random maneuvering target. By means of Lyapunov function approach, we show that an ideal missile guided by the conventional PNG law can always intercept a random maneuvering target if some specified initial conditions are satisfied and the navigation constant is chosen sufficiently high. In addition, we propose a modified PNG law. At the final phase of pursuit, the proposed guidance law has a better acceleration profile than the conventional PNG law.

  • PDF

A Fuzzy-Neural network based IMM method for Tracking a Maneuvering Target (기동표적 추적을 위한 퍼지 뉴럴 네트워크 기반 다중모델 기법)

  • Son, Hyun-Seung;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1858-1859
    • /
    • 2006
  • This paper presents a new fuzzy-neural-network based interacting multiple model (FNNBIMM) algorithm for tracking a maneuvering target. To effectively handle the unknown target acceleration, this paper regards it as additional noise, time-varying variance to target model. Each sub model characterized by the variance of the overall process noise, which is obtained on the basis of each acceleration interval. Since it is hard to approximate this time-varying variance adaptively owing to the unknown acceleration, the FNN is utilized to precisely approximate this time-varying variance. The gradient descendant method is utilized to optimize each FNN. To show the feasibility of the proposed algorithm, a numerical example is provided.

  • PDF

Design of Target Tracking System Using a New Intelligent Algorithm

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.748-753
    • /
    • 2005
  • When the maneuver occurs, the performance of the standard Kalman filter has been degraded because mismatches between the modeled target dynamics and the actual target dynamics. To solve this problem, the unknown acceleration is determined by using the fuzzy logic based on genetic algorithm(GA) method. This algorithm is the method to estimate the increment of acceleration by a fuzzy system using th relation between maneuver filler residual and non-maneuvering one. To optimize this system, a GA is utilized. And then, the modified filter is corrected by the new update equation method which is a fuzzy system using the relation between the filter residual and its variation. To shows the feasibility of the suggested method with only one filter, the computer simulations system are provided, this method is compared with multiple model method.

Angle Estimation Error Reduction Method Using Weighted IMM (Weighted IMM 기법을 사용한 각도 추정 오차 감소 기법)

  • Choi, Seonghee;Song, Taeklyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • This paper proposes a new approach to reduce the target estimation error of the measurement angle, especially applied to the medium and long range surveillance radar. If the target has no maneuver and no change in heading direction for a certain time interval, the predicted angle of interacting multiple model(IMM) from the previous track information can be used to reduce the angle estimation error. The proposed method is simulated in 2 scenarios, a scenario with a non-maneuvering target and a scenario with a maneuvering target. The result shows that the new fusion solution(weighted IMM) with the predicted azimuth and the measured azimuth is worked properly in the two scenarios.