• Title/Summary/Keyword: maneuver

Search Result 862, Processing Time 0.027 seconds

Comparative Effect of Modified Shrug Exercises With and Without Trunk Stabilization Exercise on Scapular Upward Rotator EMG and Thickness in Subjects With Scapular Downward Rotation Syndrome

  • Kim, Ji-hyun;Yoon, Hyeo-bin;Park, Joo-hee;Jeon, Hye-seon
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.60-67
    • /
    • 2017
  • Background: Scapular downward rotation syndrome (SDRS) is a common scapular alignment impairment that causes insufficient upward rotation and muscle imbalance, shortened levator scapulae (LS) and rhomboid, and lengthened serratus anterior (SA) and trapezius. A modified shrug exercise (MSE), performing a shrug exercise with the shoulders at $150^{\circ}$ abduction, is known as an effective exercise to increase scapular stabilizer muscle activation. Previous studies revealed that scapular exercise are more effective when combined with trunk stabilization exercises in decreasing scapular winging and increasing scapular stabilizer muscle activation. Objects: The purpose of our study was to clarify the effect of MSE with or without trunk stabilization exercises in subjects with SDRS. Methods: Eighteen volunteer subjects (male=10, female=8) with SDRS were recruited for this experiment. All subjects performed MSE under 3 different conditions: (1) MSE, (2) MSE with an abdominal draw-in maneuver (ADIM), and (3) MSE with an abdominal expansion maneuver (AEM). The muscle thickness of the lower trapezius (LT) and the SA were measured using an ultrasonography in each condition. Electromyography (EMG) data were collected from the LT, LS, SA, and upper trapezius (UT) muscle activities. Data were statistically analysed using one-way repeated analysis of variance at a significance level of .05. Results: The muscle thickness of the LT and the SA were the significant different in the MSE, MSE with ADIM (MSE+ADIM) and MSE with AEM (MSE+AEM) conditions (p<.05) In both LT and SA, the order of thick muscle thickness was MSE+AEM, MSE+ADIM, and MSE alone. No significant differences were found in the EMG activities of the SA, UT, LS, and LT in all condition. Conclusion: In conclusion, MSE is more beneficial to people with SDRS when combined with trunk stabilization exercises by increased thickness of scapular stabilizer muscles.

Time Optimal Attitude Maneuver Strategies for the Agile Spacecraft with Reaction Wheels and Thrusters

  • Lee Byung-Hoon;Lee Bong-Un;Oh Hwa-Suk;Lee Seon-Ho;Rhee Seung-Wu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1695-1705
    • /
    • 2005
  • Reaction wheels and thrusters are commonly used for the satellite attitude control. Since satellites frequently need fast maneuvers, the minimum time maneuvers have been extensively studied. When the speed of attitude maneuver is restricted due to the wheel torque capacity of low level, the combinational use of wheel and thruster is considered. In this paper, minimum time optimal control performances with reaction wheels and thrusters are studied. We first identify the features of the maneuvers of the satellite with reaction wheels only. It is shown that the time-optimal maneuver for the satellite with four reaction wheels in a pyramid configuration occurs on the fashion of single axis rotation. Pseudo control logic for reaction wheels is successfully adopted for smooth and chattering-free time-optimal maneuvers. Secondly, two different thrusting logics for satellite time-optimal attitude maneuver are compared with each other: constant time-sharing thrusting logic and varying time-sharing thrusting logic. The newly suggested varying time-sharing thrusting logic is found to reduce the maneuvering time dramatically. Finally, the hybrid control with reaction wheels and thrusters are considered. The simulation results show that the simultaneous actuation of reaction wheels and thrusters with varying time-sharing logic reduces the maneuvering time enormously. Spacecraft model is Korea Multi-Purpose Satellite (KOMPSAT)-2 which is being developed in Korea as an agile maneuvering satellite.

Comparison on postural control between abdominal draw-in maneuver and abdominal expansion maneuver in persons with stroke

  • Choi, Ho-Suk;Shim, Yu-Jin;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Objective: The effect of abdominal expansion maneuver (AEM) and abdominal draw-in maneuver (ADIM) on postural control in an unsupported position in stroke patients. Design: Randomized controlled trial. Methods: A total of 36 persons with hemiplegic stroke participated in this study. The subjects were randomly divided into an AEM experimental group (n=12), an experimental ADIM group (n=12), and a control group (n=12). We collected the general characteristics of all subjects and the pre-test results before the intervention and after 4 weeks of the intervention. The trunk stabilization training of the ADIM and AEM group were performed 15 minutes a day, 3 times a week for 4 weeks, and general physical therapy was performed 2 times a day, 30 minutes per session, 5 times a week for all three groups. The control group received joint mobilizations, muscle strengthening, endurance strengthening, and gait exercises along with treatment of the central nervous system, such as neuro-developmental treatment, mat, and gait training. The AEM is an inspiratory phase of tidal breathing expanding the lateral lower ribcage in a lateral direction with minimal superior movements of the chest. Then the lower abdomen expands and the navel moves in an anterior-caudal direction. The ADIM is a repeated contraction and relaxation of the anal sphincter during inspiration. The navel pulls the lower abdomen to the direction of the spine without the movement of the trunk and pelvis. Results: Before and after the interventions, medial-lateral axis movement distance, anterior-posterior axis movement distance, sway mean velocity, and sway area 95% was a statistically significant change in all three groups (p<0.05). The post-hoc test showed a significant improvement in medial-lateral axis movement distance, anterior-posterior axis movement distance, sway mean velocity, and sway area in the AEM group compared with the control group, and in the ADIM group compared with the control group (p<0.05). Conclusions: In conclusion, both AEM training and ADIM training are necessary interventions to maintain the independent sitting position according to the characteristics of the patient.

One Case of Dizziness Patients Suggested Benign Paroximal Positional Vertigo treated by Jaeumkunbitang-gamibang and Dix-hallpike maneuver (양성 발작성 자세변환성 현훈(Benign Paroximal Positional Vertigo, BPPV)으로 의심되는 현훈증 환자를 자음건비탕(滋陰健脾湯) 가미방(加味方)과 Dix-hallpike Maneuver로 치료한 치험 1례)

  • Shin, Sun-Ho;Jeong, Yong-Jun
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.181-184
    • /
    • 2000
  • Dizziness is one of common diseases clinically, it is defined as a hallucination or an illusion of motion that causes sensation disorder of circumstance, and described as circulatory. rotatory leaning. shaking sensation. In particular, benign paroximal positional vertigo(BPPV) is one of peripheral vertigo, it causes dizziness due to debris which has collected within a part of the inner ear. Chemically, debris are small crystals of calcium carbonate. They are derived from structures in the ear called 'otoliths' that have been damaged by head injury, infection, or other disorder of the inner ear, or degenerated because of advanced age. The symptoms of BPPV include dizziness or vertigo, lightheadedness, imbalance, and nausea, Activities which bring on symptoms will vary in each person, but symptom are almost always precipitated by a position change of the head or body. As for treatment of vertigo, it is differentiated as excess in the upper and deficiency in the lower(上實下虛) and treated in oriental medicine and are used to stability. antihistaminics . anticolinergics . vestibule control drug of GABA system in western medicine. Moreover, Dix-hallpike maneuver is applicated in diagnosis and treatment of BPPV patients. A case of dizziness patient suggested benign paroximal positional vertigo who is diagnosed as weakly dizziness(虛暈)showed prominent improvement by Jaeumkunbitang-gamibang(滋陰建脾湯) and Dix-hallpike maneuver.

  • PDF

A Study on the Evaluation of Driver's Collision Avoidance Maneuver based on GMDH (GMDH를 이용한 운전자의 충돌 회피 행동 평가에 관한 연구)

  • Lee, Jong-Hyeon;Oh, Ji-Yong;Kim, Gu-Yong;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.866-869
    • /
    • 2018
  • This paper presents the analysis of the human driving behavior based on the expression as a GMDH technique focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three dimensional driving simulator based on CAVE, which provides stereoscopic immersive vision. A GMDH is also introduced and applied to the measured data in order to build a mathematical model of driving behavior. From the obtained model, it is found that the longitudinal distance between cars($x_1$), the longitudinal relative velocity($x_2$) and the lateral displacement between cars($x_4$) play important roles in the collision avoidance maneuver under the 3D environments.

A Study on High Agile Satellite Maneuver through Sequential Activation of Control Moment Gyros and Reaction Wheels (제어모멘트자이로와 반작용휠의 순차적 사용을 통한 위성 고기동 연구)

  • Son, Jun-Won;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.18-28
    • /
    • 2014
  • We assume that two control moment gyros are installed for space qualification in a satellite with four reaction wheels, and study the high agile maneuver method. Using high torque control moment gyros, we reduce the satellite's attitude error. After that, we activate reaction wheels to control remaining attitude error. This proposed method can avoid singularity problem of control moment gyros, and do not require gimbals' angle to calculate torque command. Through numerical simulations, we show that our method's agile performance is similar to previous method and reduce the reaction wheels' required momentum.

A study on the effects of active suspension upon vehicle handling (능동 현가장치가 차량의 핸들링에 미치는 영향에 관한 연구)

  • Lee, Jung-Sup;Kwon, Hyok-Jo;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.603-610
    • /
    • 1998
  • This paper develops a 7 DOF vehicle model to study the effects of the active suspension on ride. The model is used to derive a control law for the active suspension using a full state linear optimal control technique. A wheelbase preview type active suspension is also considered in the control law derivation. The time delay between wheelbases is approximated using Pade approximation technique. The ride model is extended to a 14 DOF handling model. The 14 DOF handling model includes lateral, longitudinal, yaw and four wheel spin motions in addition to the 7 DOF ride model. A control law which is derived considering only ride related parameters is used to study the effects of the active suspension on a vehicle handling. J-turn maneuver simulation results show that the active suspension has a slower response in lateral acceleration and yaw rate, a bigger steady state lateral acceleration and an oversteer tendency. Lane changing maneuver simulation results show that the active suspension has a little bigger lateral acceleration but a much smaller roll angle and roll motion. Braking maneuver simulation results show that the active suspension has a much smaller pitch angle and pitch motion.

3-Dimensional Trajectory Optimization and Explicit Guidance for a Satellite Launch Vehicle with Yaw Maneuver (횡방향 기동을 하는 위성발사체의 3차원 궤적최적화와 직접식 유도기법)

  • No, Ung-Rae;Kim, Yu-Dan;Park, Jeong-Ju;Tak, Min-Je
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.613-623
    • /
    • 2002
  • Ascent trajectory optimization and explicit guidance problems for a satellite launch vehicle with yaw maneuver in a 3-dimension are considered. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the inertial pitch and yaw attitude control variables, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn and range safety conditions are imposed. An explicit inertial guidance algorithm in the exoatmospheric phase is also presented. The guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. The liquid propelled Delta 2910 launch vehicle is used as a numerical model.

Development of Gap Acceptance Models for Permitted Left Turn Intersections (비보호좌회전에서의 간격수락 행태모형 개발)

  • Lee, Chung Won;Lee, Dong Min;Hwang, Soon Cheon
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.95-103
    • /
    • 2016
  • PURPOSES : Permitted left turn is a turning maneuver in which a vehicle turns left using a gap between oncoming vehicles, called gap acceptance, and it enables for more efficient traffic operation at intersections. In Korea, the permitted left turn has not been a common maneuver at signalized or un-signalized intersections. However, many experts and the Police Agency tried to apply this effective turning maneuver at intersections in Korea since 2010. Though the investigation of gap acceptance is significantly important in understanding a driver's behavior at intersections, there have not been many studies about this topic, specifically a study to develop probability models of gap acceptance behavior. METHODS : In this study, the probability model of gap acceptance behavior for a permitted left turn was developed based on observational field studies. To develop the model, seven variables were analyzed including gap, waiting time, traffic volume, conflict-flow vehicle type, left-turning vehicle type, the number of lane, and time. RESULTS : In the final model, gap and left-turning vehicle type were found to be significant influencing factors. CONCLUSIONS : Through this model development, it was concluded that as the gap size increased, the probability of gap acceptance was higher. Moreover, when a left-turning vehicle was a passenger car, the probability of gap acceptance was higher than compared to large size buses or freight cars.

Effect of a modified maneuver for quadriceps muscle setting with co-contraction of the hamstrings on patients with knee joint osteoarthritis (퇴행성 슬관절염 환자에 대한 수정된 대퇴사두근과 슬괵근 운동의 동시수축 효과)

  • Kang, Jung-Sun;Lee, Wan-Hee;Lee, Dong-Jin;Hwang, Don-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.375-383
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate a modified maneuver for quadriceps setting exercise for patients with knee osteoarthritis. Methods : The patients were randomly divided into a modified maneuver for quadriceps setting exercise group(MQG) and conventional quadriceps setting exercise group(CQG). Total of 28 patients received a modality with training for 1 hour, three times a week for 12 weeks. Results : Each group showed significant reductions in the WOMAC(Western Ontario McMaster Universities Osteoarthritis) Index, mobility, and muscle strength after 12 weeks. In pain, physical function, and hamstring muscle strength, there was a statistically significant difference between groups. Conclusion : According to the results, MQG experienced less pain, physical function, and increased more hamstring muscle strength than NQG.