• Title/Summary/Keyword: mandibular canal

Search Result 317, Processing Time 0.023 seconds

Trifid mandibular canal in Cone-Beam CT : A case report (CBCT에서 관찰되는 trifid mandibular canal)

  • Han, Won-Jeong
    • The Journal of the Korean dental association
    • /
    • v.56 no.2
    • /
    • pp.113-119
    • /
    • 2018
  • Trifid mandibular canal (TMC) is one of the anatomical variation of mandibular canal with clinical importance. An extra mandibular canal may explain inadequate anesthesis and be damaged causing paresthesia or bleeding during mandibular surgery. CBCT with high-level spatial resolution is an useful tool for the detection of mandibular canal and its variation. The aim of this report is to present a case of trifid mandibular canal with CBCT images and to give information on this anatomical variation of mandibular canal.

  • PDF

Diversion of the mandibular canal: Is it the best predictor of inferior alveolar nerve damage during mandibular third molar surgery on panoramic radiographs?

  • Tassoker, Melek
    • Imaging Science in Dentistry
    • /
    • v.49 no.3
    • /
    • pp.213-218
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the relationship between the mandibular canal and impacted mandibular third molars using cone-beam computed tomography (CBCT) and to compare the CBCT findings with signs on panoramic radiographs(PRs). Materials and Methods: This retrospective study consisted of 200 mandibular third molars from 200 patients who showed a close relationship between the mandibular canal and impacted third molars on PRs and were referred for a CBCT examination of the position of the mandibular canal. The sample consisted of 124 females and 76 males, with ages ranging from 18 to 47 years (mean, $25.75{\pm}6.15$ years). PRs were evaluated for interruption of the mandibular canal wall, darkening of the roots, diversion of the mandibular canal, and narrowing of the mandibular canal. Correlations between the PR and CBCT findings were statistically analyzed. Results: In total, 146 cases(73%) showed an absence of canal cortication between the mandibular canal and impacted third molar on CBCT images. A statistically significant relationship was found between CBCT and PR findings (P<0.05). The absence of canal cortication on CBCT images was most frequently accompanied by the PR sign of diversion of the mandibular canal(96%) and least frequently by interruption of the mandibular canal wall(65%). Conclusion: CBCT examinations are highly recommended when diversion of the mandibular canal is observed on PR images to reduce the risk of mandibular nerve injury, and this sign appears to be more relevant than other PR signs.

Assessment of accessory mandibular canal in mandibular third molars using cone-beam computed tomography (콘빔 CT를 이용한 하악 제3대구치부의 부하악관 평가)

  • Cho, Bong-Hae;Jung, Yun-Hoa
    • The Journal of the Korean dental association
    • /
    • v.52 no.12
    • /
    • pp.753-761
    • /
    • 2014
  • Purpose: This study was performed to examine distribution of accessory mandibular canal and its characteristics in mandibular third molars. Materials and methods: A total of 251 subjects (166 males and 85 females) having mandibular third molars bilaterally were included in the study. Cone-beam computed tomographic images were reviewed for bifid or trifid accessory mandibular canal. The prevalence of accessory mandibular canal was evaluated according to gender, side and its branching type. Proximity and crosssectional position of accessory mandibular canal to mandibular third molar was analyzed. Results: Accessory mandibular canals were found in 66 (26.3%) of 251 patients and 86 (17.1%) of 502 hemi-mandibles. Gender and sides showed no statistically significant differences in prevalence. Retromolar canal (46.1%) was the most common branching type. Proximity of accessory canal to mandibular third molars showed mean distance of 2.8 mm from third molar and a statistically significant difference was found among types of accessory canal. Dental canal was the closest to tooth among branching types and closer to tooth than main canal. On cross-sectional view, accessory canal was generally located on buccal side of mandibular third molar. Conclusion: Accessory mandibular canal was common and well detected with cone-beam computed tomography. Their localization is significant in all anesthetic and surgical procedures involving mandibular third molars.

Analysis and evaluation of relative positions of mandibular third molar and mandibular canal impacts

  • Kim, Hang-Gul;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.6
    • /
    • pp.278-284
    • /
    • 2014
  • Objectives: This study used cone-beam computed tomography (CBCT) images to categorize the relationships between the mandibular canal and the roots and investigated the prevalence of nerve damage. Materials and Methods: Through CBCT images, contact and three-dimensional positional relationships between the roots of the mandibular third molar and the mandibular canal were investigated. With this data, prevalence of nerve damage according to the presence of contact and three-dimensional positional relationships was studied. Other factors that affected the prevalence of nerve damage were also investigated. Results: When the mandibular third molar and the mandibular canal were shown to have direct contact in CBCT images, the prevalence of nerve damage was higher than in other cases. Also, in cases where the mandibular canal was horizontally lingual to the mandibular third molar and the mandibular canal was vertically at the cervical level of the mandibular third molar, the prevalence of nerve damage was higher than in opposite cases. The percentage of mandibular canal contact with the roots of the mandibular third molar was higher when the mandibular canal was horizontally lingual to the mandibular third molar. Finally, the prevalence of nerve damage was higher when the diameter of the mandibular canal lumen suddenly decreased at the contact area between the mandibular canal and the roots, as shown in CBCT images. Conclusion: The three-dimensional relationship of the mandibular third molar and the mandibular canal can help predict nerve damage and can guide patient expectations of the possibility and extent of nerve damage.

Positional relationship between mandibular third molar and mandibular canal in cone beam computed tomographs

  • Yu, Su-Kyoung;Lee, Ji-Un;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.37 no.4
    • /
    • pp.197-203
    • /
    • 2007
  • Purpose: To provide diagnostic information by evaluation of the positional relationship between the mandibular third molar and the mandibular canal. Materials and Methods: Eighty-nine mandibular third molars were classified as mesioangular, horizontal, vertical, distoangular groups. The distances between the mandibular third molar and the mandibular canal were measured in cone-beam computed tomographs. The height and width ratios of distances from the mandibular third molar and the mandibular canal to the mandibular inferior border and to the lingual cortical plate were calculated. Results: The vertical and buccolingual distances between the mandibular third molar and the mandibular canal were 0.03 mm, 2.96 mm in the mesioangular, 0.37 mm, 3.38 mm in the horizontal, -1.50 mm, 1.38 mm in the vertical, -1.10 mm, 4.20 mm in the distoangular group. There were significant differences in vertical (P < 0.05), but not in buccolingual (P>0.05). The height and width ratios of distances on the mandibular third molar were 47.1 %, 36.1 % in the mesioangular, 47.4%, 34.4% in the horizontal, 37.0%, 46.7% in the vertical, 40.9%, 37.4% in the distoangular group. There were significant differences between the mesioangular and the vertical group, and the horizontal and the vertical group in height ratio (P < 0.05), and also between the mesioangular and the vertical group in width ratio (P < 0.05). The height and width ratios of distances on the mandibular canal showed no significant differences between groups (P > 0.05). Conclusion : The mesioangular group showed the nearest distance between the mandibular third molar and the mandibular canal vertically. The root apex of the mandibular third molar was positioned more buccally in the vertical group than in the mesioangular group.

  • PDF

Reliability of panoramic radiography in predicting proximity of third molars to the mandibular canal: A comparison using cone-beam computed tomography

  • Nunes, Willy James Porto;Vieira, Aline Lisboa;de Abreu Guimaraes, Leticia Drumond;de Alcantara, Carlos Eduardo Pinto;Verner, Francielle Silvestre;de Carvalho, Matheus Furtado
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Purpose: The purpose of this study was to analyze the reliability of 7 panoramic radiographic signs for predicting proximity of the root apices of mandibular third molars to the mandibular canal using cone-beam computed tomography and to correlate these findings with the Pell and Gregory and the Winter classification systems. Materials and Methods: An observational, cross-sectional, descriptive study was conducted on 74 patients with bilateral impacted mandibular third molars. Four panoramic radiographic signs were observed in the tooth root (darkening, deflection, and narrowing of the root apices, and bifid apices), and another 3 in the mandibular canal (diversion, narrowing, and interruption of the mandibular canal). Cone-beam computed tomography images were analyzed to identify disruption and diversion of the mandibular canal and root deflection. Results: Binary logistic regression showed that only 4 of the 7 panoramic radiographic signs were able to predict proximity of the root apices of the mandibular third molars to the mandibular canal: darkening of the root, deflection of the root, narrowing of the root, and interruption of the mandibular canal(P<0.05). Conclusion: Darkening, deflection, and narrowing of the root, in tandem with the interruption of the mandibular canal on panoramic radiographs, indicate that cone-beam computed tomography should be performed when planning the extraction of impacted mandibular third molars. Proximity between mandibular third molars and the mandibular canal is correlated with the Winter classification.

POSITIONAL RELATIONSHIP OF THE MANDIBULAR CANAL AND IMPACTED THIRD MOLARS BY USING DENTAL CONE BEAM COMPUTED TOMOGRAPHY (제3대구치와 하악관과의 위치 관계에서 치과용 Cone beam CT의 유용성)

  • Chu, Yeon-Gyu;Park, Young-In;Kim, Jin-Wook;Lee, Sang-Han
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.6
    • /
    • pp.492-498
    • /
    • 2009
  • We sought to evaluate the relationship between the mandibular canal and impacted mandibular third molars by using dental cone beam computed tomograph(CBCT) for third molar surgery. A total of 111 patients(177 teeth) offered the images through CBCT and panoramic radiography for the extraction of the mandibular third molars. In CBCT, the accurate relationship between the third molar and the mandibular canal were evaluated. In panoramic radiographies, we evaluated the impacted level and superimposition sign of the mandibular third molar with the mandibular canal, and also, the radiopacity of the white line in the canal. Data were statistically analyzed and estimated by $X^2$-test. In CBCT finding, high prevalence of contact between the mandibular canal and roots occured in the deep impacted third molars, narrowing mandibular canals, bending mandibular canals and cases where the radiopacity of white line of canals were "absence" on panoramic images. It showed statistical significance (P<0.05). When evaluating the mandibular canal and the roots through the panoramic radiography for third molar extraction, it could be difficult to diagnosis accurately. Thus, it is required to have an accurate diagnostic approach through CBCT that could evaluated the location between mandibular canal and root.

Assessment of the relationship between the mandibular third molar and the mandibular canal using panoramic radiograph and cone beam computed tomography (파노라마 방사선사진과 cone beam CT에서 제3대구치와 하악관의 관계 평가)

  • Jung, Yun-Hoa;Nah, Kyung-Soo;Cho, Bong-Hae
    • Imaging Science in Dentistry
    • /
    • v.38 no.3
    • /
    • pp.163-167
    • /
    • 2008
  • Purpose : The purpose of this study is to evaluate the position of the mandibular canal in relation to the mandibular third molar by cone beam CT in cases showing a close relationship between the third molar and the mandibular canal on the panoramic radiograph. Materials and Methods : The panoramic images and cone beam CT scans of 87 impacted mandibular third molars in 60 patients were evaluated to assess the tooth relationship to the mandibular canal. The clearness of the canal wall and the vertical depth of the lower third molar were evaluated on panoramic radiographs. The lower third molars were assessed using cone beam CT to determine the proximity and position of the canal relative to the roots. Results : In the 66 cases where the canal wall was unclear on the panoramic radiographs, 58 (87.9%) of the third molars had contact between the canal and root; 34 (51.5%) canals were showed an inferior position and 22 (33.3%) showed a linguoinferior position on cone beam CT. Conclusion : Interruption of the canal wall on panoramic radiographs was highly predictive of contact between the mandibular canal and the third molar. Cross sectional CT may be indicated for localization of the mandibular canal in such cases.

  • PDF

Correlation of panoramic radiographs and cone beam computed tomography in the assessment of a superimposed relationship between the mandibular canal and impacted third molars

  • Jung, Yun-Hoa;Nah, Kyung-Soo;Cho, Bong-Hae
    • Imaging Science in Dentistry
    • /
    • v.42 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • Purpose: This study evaluated the association between cone beam computed tomography (CBCT) and panoramic radiographs in the assessment of a superimposed relationship between the mandibular canal and impacted third molars. Materials and Methods: The study samples consisted of 175 impacted third molars from 131 patients who showed a superimposed relationship between the mandibular canal and third molars on panoramic radiographs and were referred for the examination of the mandibular canal with CBCT. Panoramic images were evaluated for the darkening of the root and the interruption of the mandibular canal wall. CBCT images were used to assess the buccolingual position of the mandibular canal relative to the third molar, the proximity of the roots to the canal, and lingual cortical bone loss. The association of the panoramic and CBCT findings was examined using a Chi-square test and Fisher's exact test. Results: Panoramic radiographic signs were statistically associated with CBCT findings (P<0.01). In cases of darkening roots, lingual cortical bone loss or buccally positioned canals were more frequent. In cases in which the mandibular canal wall was interrupted on panoramic radiographs, contact or lingually positioned canals were more frequent. Conclusion: The results of this study suggest that contact between the mandibular third molar and canal and a lingually positioned canal could be more frequently observed in cases of the interruption of the white line of the mandibular canal and that there could be more lingual cortical loss in cases of darkening roots.

Anatomical position of the mandibular canal in relation to the buccal cortical bone: relevance to sagittal split osteotomy

  • Lee, Han Eol;Han, Se Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.4
    • /
    • pp.167-173
    • /
    • 2018
  • Objectives: Classification of the degree of postoperative nerve damage according to contact with the mandibular canal and buccal cortical bone has been studied, but there is a lack of research on the difference in postoperative courses according to contact with buccal cortical bone. In this study, we divided patients into groups according to contact between the mandibular canal and the buccal cortical bone, and we compared the position of the mandibular canal in the second and first molar areas. Materials and Methods: Class III patients who visited the Dankook University Dental Hospital were included in this study. The following measurements were made at the second and first molar positions: (1) length between the outer margin of the mandibular canal and the buccal cortical margin (a); (2) mandibular thickness at the same level (b); (3) Buccolingual $ratio=(a)/(b){\times}100$; and (4) length between the inferior margin of the mandibular canal and the inferior cortical margin. Results: The distances from the canal to the buccal bone and from the canal to the inferior bone and mandibular thickness were significantly larger in Group II than in Group I. The buccolingual ratio of the canal was larger in Group II in the second molar region. Conclusion: If mandibular canal is in contact with the buccal cortical bone, the canal will run closer to the buccal bone and the inferior border of the mandible in the second and first molar regions.