• Title/Summary/Keyword: management support systems

Search Result 2,274, Processing Time 0.031 seconds

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.

Research on the Digital Twin Policy for the Utilization of Administrative Services (행정서비스 활용을 위한 디지털 트윈 정책 연구)

  • Jina Ok;Soonduck Yoo;Hyojin Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • The purpose of this study is to research digital twin policies for the use of administrative services. The study was conducted through a mobile survey of 1,000 participants, and the results are as follows. First, in order to utilize digital twin technology, it is necessary to first identify appropriate services that can be applied from the perspective of Gyeonggi Province. Efforts to identify digital twin services that are suitable for Gyeonggi Province's field work should be prioritized, and this should lead to increased efficiency in the work. Second, Gyeonggi Province's digital twin administrative services should prevent duplication with central government projects and establish a model that can be connected and utilized. It should be driven around current issues in Gyeonggi Province and the demands of citizens for administrative services. Third, to develop Gyeonggi Province's digital twin administrative services, a standard model development plan through participation in pilot projects should be considered. Gyeonggi Province should lead the project as the main agency and promote it through a collaborative project agreement. It is suggested that a support system for the overall project be established through the Gyeonggi Province Digital Twin Advisory Committee. Fourth, relevant regulations and systems for the construction, operation, and management of dedicated departments and administrative services should be established. To achieve the realization of digital twins in Gyeonggi Province, a dedicated organization that can perform various roles in project promotion and operation, as well as legal and institutional improvements, is necessary. To designate a dedicated organization, it is necessary to consider expanding and reorganizing existing departments and evaluating the operation of newly established departments. The limitation of this study is that it only surveyed participants from Gyeonggi Province, and it is recommended that future research be conducted nationwide. The expected effect of this study is that it can serve as a foundational resource for applying digital twin services to public work.

Analysis of the Effects of E-commerce User Ratings and Review Helfulness on Performance Improvement of Product Recommender System (E-커머스 사용자의 평점과 리뷰 유용성이 상품 추천 시스템의 성능 향상에 미치는 영향 분석)

  • FAN, LIU;Lee, Byunghyun;Choi, Ilyoung;Jeong, Jaeho;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.311-328
    • /
    • 2022
  • Because of the spread of smartphones due to the development of information and communication technology, online shopping mall services can be used on computers and mobile devices. As a result, the number of users using the online shopping mall service increases rapidly, and the types of products traded are also growing. Therefore, to maximize profits, companies need to provide information that may interest users. To this end, the recommendation system presents necessary information or products to the user based on the user's past behavioral data or behavioral purchase records. Representative overseas companies that currently provide recommendation services include Netflix, Amazon, and YouTube. These companies support users' purchase decisions by recommending products to users using ratings, purchase records, and clickstream data that users give to the items. In addition, users refer to the ratings left by other users about the product before buying a product. Most users tend to provide ratings only to products they are satisfied with, and the higher the rating, the higher the purchase intention. And recently, e-commerce sites have provided users with the ability to vote on whether product reviews are helpful. Through this, the user makes a purchase decision by referring to reviews and ratings of products judged to be beneficial. Therefore, in this study, the correlation between the product rating and the helpful information of the review is identified. The valuable data of the evaluation is reflected in the recommendation system to check the recommendation performance. In addition, we want to compare the results of skipping all the ratings in the traditional collaborative filtering technique with the recommended performance results that reflect only the 4 and 5 ratings. For this purpose, electronic product data collected from Amazon was used in this study, and the experimental results confirmed a correlation between ratings and review usefulness information. In addition, as a result of comparing the recommendation performance by reflecting all the ratings and only the 4 and 5 points in the recommendation system, the recommendation performance of remembering only the 4 and 5 points in the recommendation system was higher. In addition, as a result of reflecting review usefulness information in the recommendation system, it was confirmed that the more valuable the review, the higher the recommendation performance. Therefore, these experimental results are expected to improve the performance of personalized recommendation services in the future and provide implications for e-commerce sites.

Venture Capital Investment and the Performance of Newly Listed Firms on KOSDAQ (벤처캐피탈 투자에 따른 코스닥 상장기업의 상장실적 및 경영성과 분석)

  • Shin, Hyeran;Han, Ingoo;Joo, Jihwan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.2
    • /
    • pp.33-51
    • /
    • 2022
  • This study analyzes newly listed companies on KOSDAQ from 2011 to 2020 for both firms having experience in attracting venture investment before listing (VI) and those without having experience in attracting venture investment (NVI) by examining differences between two groups (VI and NVI) with respect to both the level of listing performance and that of firm performance (growth) after the listing. This paper conducts descriptive statistics, mean difference, and multiple regression analysis. Independent variables for regression models include VC investment, firm age at the time of listing, firm type, firm location, firm size, the age of VC, the level of expertise of VC, and the level of fitness of VC with investment company. Throughout this paper, results suggest that listing performance and post-listed growth are better for VI than NVI. VC investment shows a negative effect on the listing period and a positive effect on the sales growth rate. Also, the amount of VC investment has negative effects on the listing period and positive effects on the market capitalization at the time of IPO and on sales growth among growth indicators. Our evidence also implies a significantly positive effect on growth after listing for firms which belong to R&D specialized industries. In addition, it is statistically significant for several years that the firm age has a positive effect on the market capitalization growth rate. This shows that market seems to put the utmost importance on a long-term stability of management capability. Finally, among the VC characteristics such as the age of VC, the level of expertise of VC, and the level of fitness of VC with investment company, we point out that a higher market capitalization tends to be observed at the time of IPO when the level of expertise of anchor VC is high. Our paper differs from prior research in that we reexamine the venture ecosystem under the outbreak of coronavirus disease 2019 which stimulates the degradation of the business environment. In addition, we introduce more effective variables such as VC investment amount when examining the effect of firm type. It enables us to indirectly evaluate the validity of technology exception policy. Although our findings suggest that related policies such as the technology special listing system or the injection of funds into the venture ecosystem are still helpful, those related systems should be updated in a more timely fashion in order to support growth power of firms due to the rapid technological development. Furthermore, industry specialization is essential to achieve regional development, and the growth of the recovery market is also urgent.

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.

An Analysis of the Moderating Effects of User Ability on the Acceptance of an Internet Shopping Mall (인터넷 쇼핑몰 수용에 있어 사용자 능력의 조절효과 분석)

  • Suh, Kun-Soo
    • Asia pacific journal of information systems
    • /
    • v.18 no.4
    • /
    • pp.27-55
    • /
    • 2008
  • Due to the increasing and intensifying competition in the Internet shopping market, it has been recognized as very important to develop an effective policy and strategy for acquiring loyal customers. For this reason, web site designers need to know if a new Internet shopping mall(ISM) will be accepted. Researchers have been working on identifying factors for explaining and predicting user acceptance of an ISM. Some studies, however, revealed inconsistent findings on the antecedents of user acceptance of a website. Lack of consideration for individual differences in user ability is believed to be one of the key reasons for the mixed findings. The elaboration likelihood model (ELM) and several studies have suggested that individual differences in ability plays an moderating role on the relationship between the antecedents and user acceptance. Despite the critical role of user ability, little research has examined the role of user ability in the Internet shopping mall context. The purpose of this study is to develop a user acceptance model that consider the moderating role of user ability in the context of Internet shopping. This study was initiated to see the ability of the technology acceptance model(TAM) to explain the acceptance of a specific ISM. According to TAM. which is one of the most influential models for explaining user acceptance of IT, an intention to use IT is determined by usefulness and ease of use. Given that interaction between user and website takes place through web interface, the decisions to accept and continue using an ISM depend on these beliefs. However, TAM neglects to consider the fact that many users would not stick to an ISM until they trust it although they may think it useful and easy to use. The importance of trust for user acceptance of ISM has been raised by the relational views. The relational view emphasizes the trust-building process between the user and ISM, and user's trust on the website is a major determinant of user acceptance. The proposed model extends and integrates the TAM and relational views on user acceptance of ISM by incorporating usefulness, ease of use, and trust. User acceptance is defined as a user's intention to reuse a specific ISM. And user ability is introduced into the model as moderating variable. Here, the user ability is defined as a degree of experiences, knowledge and skills regarding Internet shopping sites. The research model proposes that the ease of use, usefulness and trust of ISM are key determinants of user acceptance. In addition, this paper hypothesizes that the effects of the antecedents(i.e., ease of use, usefulness, and trust) on user acceptance may differ among users. In particular, this paper proposes a moderating effect of a user's ability on the relationship between antecedents with user's intention to reuse. The research model with eleven hypotheses was derived and tested through a survey that involved 470 university students. For each research variable, this paper used measurement items recognized for reliability and widely used in previous research. We slightly modified some items proper to the research context. The reliability and validity of the research variables were tested using the Crobnach's alpha and internal consistency reliability (ICR) values, standard factor loadings of the confirmative factor analysis, and average variance extracted (AVE) values. A LISREL method was used to test the suitability of the research model and its relating six hypotheses. Key findings of the results are summarized in the following. First, TAM's two constructs, ease of use and usefulness directly affect user acceptance. In addition, ease of use indirectly influences user acceptance by affecting trust. This implies that users tend to trust a shopping site and visit repeatedly when they perceive a specific ISM easy to use. Accordingly, designing a shopping site that allows users to navigate with heuristic and minimal clicks for finding information and products within the site is important for improving the site's trust and acceptance. Usefulness, however, was not found to influence trust. Second, among the three belief constructs(ease of use, usefulness, and trust), trust was empirically supported as the most important determinants of user acceptance. This implies that users require trustworthiness from an Internet shopping site to be repeat visitors of an ISM. Providing a sense of safety and eliminating the anxiety of online shoppers in relation to privacy, security, delivery, and product returns are critically important conditions for acquiring repeat visitors. Hence, in addition to usefulness and ease of use as in TAM, trust should be a fundamental determinants of user acceptance in the context of internet shopping. Third, the user's ability on using an Internet shopping site played a moderating role. For users with low ability, ease of use was found to be a more important factors in deciding to reuse the shopping mall, whereas usefulness and trust had more effects on users with high ability. Applying the EML theory to these findings, we can suggest that experienced and knowledgeable ISM users tend to elaborate on such usefulness aspects as efficient and effective shopping performance and trust factors as ability, benevolence, integrity, and predictability of a shopping site before they become repeat visitors of the site. In contrast, novice users tend to rely on the low elaborating features, such as the perceived ease of use. The existence of moderating effects suggests the fact that different individuals evaluate an ISM from different perspectives. The expert users are more interested in the outcome of the visit(usefulness) and trustworthiness(trust) than those novice visitors. The latter evaluate the ISM in a more superficial manner focusing on the novelty of the site and on other instrumental beliefs(ease of use). This is consistent with the insights proposed by the Heuristic-Systematic model. According to the Heuristic-Systematic model. a users act on the principle of minimum effort. Thus, the user considers an ISM heuristically, focusing on those aspects that are easy to process and evaluate(ease of use). When the user has sufficient experience and skills, the user will change to systematic processing, where they will evaluate more complex aspects of the site(its usefulness and trustworthiness). This implies that an ISM has to provide a minimum level of ease of use to make it possible for a user to evaluate its usefulness and trustworthiness. Ease of use is a necessary but not sufficient condition for the acceptance and use of an ISM. Overall, the empirical results generally support the proposed model and identify the moderating effect of the effects of user ability. More detailed interpretations and implications of the findings are discussed. The limitations of this study are also discussed to provide directions for future research.

Effects of firm strategies on customer acquisition of Software as a Service (SaaS) providers: A mediating and moderating role of SaaS technology maturity (SaaS 기업의 차별화 및 가격전략이 고객획득성과에 미치는 영향: SaaS 기술성숙도 수준의 매개효과 및 조절효과를 중심으로)

  • Chae, SeongWook;Park, Sungbum
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.151-171
    • /
    • 2014
  • Firms today have sought management effectiveness and efficiency utilizing information technologies (IT). Numerous firms are outsourcing specific information systems functions to cope with their short of information resources or IT experts, or to reduce their capital cost. Recently, Software-as-a-Service (SaaS) as a new type of information system has become one of the powerful outsourcing alternatives. SaaS is software deployed as a hosted and accessed over the internet. It is regarded as the idea of on-demand, pay-per-use, and utility computing and is now being applied to support the core competencies of clients in areas ranging from the individual productivity area to the vertical industry and e-commerce area. In this study, therefore, we seek to quantify the value that SaaS has on business performance by examining the relationships among firm strategies, SaaS technology maturity, and business performance of SaaS providers. We begin by drawing from prior literature on SaaS, technology maturity and firm strategy. SaaS technology maturity is classified into three different phases such as application service providing (ASP), Web-native application, and Web-service application. Firm strategies are manipulated by the low-cost strategy and differentiation strategy. Finally, we considered customer acquisition as a business performance. In this sense, specific objectives of this study are as follows. First, we examine the relationships between customer acquisition performance and both low-cost strategy and differentiation strategy of SaaS providers. Secondly, we investigate the mediating and moderating effects of SaaS technology maturity on those relationships. For this purpose, study collects data from the SaaS providers, and their line of applications registered in the database in CNK (Commerce net Korea) in Korea using a questionnaire method by the professional research institution. The unit of analysis in this study is the SBUs (strategic business unit) in the software provider. A total of 199 SBUs is used for analyzing and testing our hypotheses. With regards to the measurement of firm strategy, we take three measurement items for differentiation strategy such as the application uniqueness (referring an application aims to differentiate within just one or a small number of target industry), supply channel diversification (regarding whether SaaS vendor had diversified supply chain) as well as the number of specialized expertise and take two items for low cost strategy like subscription fee and initial set-up fee. We employ a hierarchical regression analysis technique for testing moderation effects of SaaS technology maturity and follow the Baron and Kenny's procedure for determining if firm strategies affect customer acquisition through technology maturity. Empirical results revealed that, firstly, when differentiation strategy is applied to attain business performance like customer acquisition, the effects of the strategy is moderated by the technology maturity level of SaaS providers. In other words, securing higher level of SaaS technology maturity is essential for higher business performance. For instance, given that firms implement application uniqueness or a distribution channel diversification as a differentiation strategy, they can acquire more customers when their level of SaaS technology maturity is higher rather than lower. Secondly, results indicate that pursuing differentiation strategy or low cost strategy effectively works for SaaS providers' obtaining customer, which means that continuously differentiating their service from others or making their service fee (subscription fee or initial set-up fee) lower are helpful for their business success in terms of acquiring their customers. Lastly, results show that the level of SaaS technology maturity mediates the relationships between low cost strategy and customer acquisition. That is, based on our research design, customers usually perceive the real value of the low subscription fee or initial set-up fee only through the SaaS service provide by vender and, in turn, this will affect their decision making whether subscribe or not.

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.

Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China (인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로)

  • Lee, JaeWon;Oh, SangJin
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.71-90
    • /
    • 2020
  • Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.