• 제목/요약/키워드: management of school

검색결과 21,230건 처리시간 0.054초

인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로 (Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China)

  • 이재원;오상진
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.71-90
    • /
    • 2020
  • 최근 전 세계 보험업계에도 기계학습, 자연어 처리, 딥러닝 등의 인공지능 기술 활용을 통한 디지털 전환이 급속도로 확산하고 있다. 이에 따라 인공지능 기술을 기반으로 한 인슈어테크와 플랫폼 비즈니스 성공을 이룬 해외 보험사들도 증가하고 있다. 대표적으로 중국 최대 민영기업인 평안보험그룹은 '금융과 기술', '금융과 생태계'를 기업의 핵심 키워드로 내세우며 끊임없는 혁신에 도전한 결과, 인슈어테크와 디지털플랫폼 분야에서 괄목할만한 성과를 보이며 중국의 글로벌 4차 산업혁명을 선도하고 있다. 이에 본 연구는 평안보험그룹 인슈어테크와 플랫폼 비즈니스 활동을 ser-M 분석 모델을 통해 분석하여 국내 보험사들의 인공지능 기술기반 비즈니스 활성화를 위한 전략적 시사점을 제공하고자 했다. ser-M 분석 모델은 기업의 경영전략을 주체, 환경, 자원, 메커니즘 관점에서 통합적으로 해석이 가능한 프레임으로, 최고경영자의 비전과 리더십, 기업의 역사적 환경, 다양한 자원 활용, 독특한 메커니즘 관계가 통합적으로 해석되도록 연구하였다. 사례분석 결과, 평안보험은 안면·음성·표정 인식 등 핵심 인공지능 기술을 활용하여 세일즈, 보험인수, 보험금 청구, 대출 서비스 등 업무 전 영역을 디지털로 혁신함으로써 경비 절감과 고객서비스 발전을 이루었다. 또한 '중국 내 온라인 데이터'와 '회사가 축적한 방대한 오프라인 데이터 및 통찰력'을 인공지능, 빅데이터 분석 등 신기술과 결합하여 금융 서비스와 디지털 서비스 사업이 통합된 디지털 플랫폼을 구축하였다. 이러한 평안보험그룹의 성공 배경을 ser-M 관점에서 분석해 보면, 창업자 마밍즈 회장은 4차 산업혁명 시대의 디지털 기술발전, 시장경쟁 및 인구 구조의 변화를 빠르게 포착하여 새로운 비전을 수립하고 디지털 기술중시의 민첩한 리더십을 발휘하였다. 환경변화에 대응한 창업자 주도의 강력한 리더십을 바탕으로 인공지능 기술 투자, 우수 전문인력 확보, 빅데이터 역량 강화 등 내부자원을 혁신하고, 외부 흡수역량의 결합, 다양한 업종 간의 전략적 제휴를 통해 인슈어테크와 플랫폼 비즈니스를 성공적으로 끌어냈다. 이와 같은 성공사례 분석을 통하여 인슈어테크와 디지털플랫폼 도입을 본격 준비하고 있는 국내 보험사들에게 디지털 시대에 필요한 경영 전략과 리더십에 대한 시사점을 줄 수 있다.

클라우드 컴퓨팅 관련 논문의 서지정보 및 인용정보를 활용한 연구 동향 분석: 사회 네트워크 분석의 활용 (Research Trend Analysis Using Bibliographic Information and Citations of Cloud Computing Articles: Application of Social Network Analysis)

  • 김동성;김종우
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.195-211
    • /
    • 2014
  • 클라우드 컴퓨팅 서비스는 IT 자원을 사용자 요구에 따라 서비스 형태로 제공하며, IT 자원을 소유하는 기존의 개념에서 빌려서 사용하는 개념으로 새로운 IT 패러다임 전환을 이끌고 있다. 이러한 클라우드 컴퓨팅은 과거의 네트워크 컴퓨팅, 유틸리티 컴퓨팅, 서버 기반 컴퓨팅, 그리드 컴퓨팅 등에 대한 연구들을 기반으로 진화해온 IT 서비스로서, 추후 여러분야에 접목 가능성이 높음에 따라 다양한 분야에서의 연구가 지속적으로 이루어지고 있다. 본 연구에서는 1994년부터 2012년까지 주요 해외 저널에 게재된 클라우드 컴퓨팅 관련 연구 논문들의 서지정보 및 인용정보를 수집하였으며, 사회 네트워크 분석 척도를 활용하여 연구 논문간의 인용 관계와 동일 논문에 출현하는 키워드간의 관계로부터 연구 주제들 간 네트워크 변화를 분석하였다. 이를 통해서 클라우드 컴퓨팅 관련 분야의 연구 주제들간의 관계를 파악할 수 있었고, 추후 잠재성이 높은 신규 연구 주제들을 도출하였다. 또한 본 연구에서는 클라우드 컴퓨팅에 대한 연구 동향 맵(research trend map)을 작성하여, 클라우드 컴퓨팅과 관련된 연구 주제들의 동태적인 변화를 확인하였다. 이러한 연구 동향 맵을 통해서 클라우드 컴퓨팅 주요 연구들의 추이를 쉽게 파악 할 수 있으며, 진화 형태 또는 유망 분야를 설명할 수 있다. 논문 인용 관계 분석 결과, 클라우드 컴퓨팅 보안과 분산 처리, 클라우드 컴퓨팅에서의 광네트워크에 관한 연구 논문들이 페이지랭크 척도를 기준으로 상위에 나타났다. 연구 논문의 핵심 주제를 나타내는 키워드에 대한 결과는 2009년에는 클라우드 컴퓨팅과 그리드 컴퓨팅이 높은 중심성 수치를 보였으며, 2010~2011년에는 데이터 아웃소싱, 에러검출 방법, 인프라구축 등 주요 클라우드 요소 기술에 관한 키워드가 높은 중심성 수치를 나타내었다. 2012년에는 보안, 가상화, 자원 관리 등이 높은 중심성 수치를 보였으며, 이를 통해서 클라우드 컴퓨팅 기술들에 대한 관심이 점차 증가함을 확인 할 수 있다. 연구 동향 맵 작성 결과, 보안은 유망영역에 위치하고 있으며, 가상화는 유망영역에서 성장 영역으로 이동하였고, 그리드 컴퓨팅과 분산 시스템은 쇠퇴 영역으로 이동하고 있음을 확인 할 수 있다.

불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델 (A Hybrid SVM Classifier for Imbalanced Data Sets)

  • 이재식;권종구
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.125-140
    • /
    • 2013
  • 어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.

자아조절자원 및 해석수준이 공짜대안 선택에 미치는 영향 (The Effects of Self-regulatory Resources and Construal Levels on the Choices of Zero-cost Products)

  • 이진용;임승아
    • Asia Marketing Journal
    • /
    • 제13권4호
    • /
    • pp.55-76
    • /
    • 2012
  • 사람들이 돈을 지불하지 않고 무료로 얻을 수 있는 공짜제품을 과다하게 선호하는 현상을 '공짜효과'라 한다. 기존 연구들에 의하면 공짜제품에 주어지는 특별한 가치 때문에 이와 같은 효과가 발생한다. 본 연구는 공짜효과가 항상 나타나는 것이 아니라 심리적 변수에 의하여 조절될 수 있다는 것을 보이기 위하여 자아조절자원과 해석수준의 조절효과를 살펴보았다. 자아조절자원이 고갈되면 통제의 힘이 약해져서 가격에 대한 민감도가 감소할 뿐만 아니라 직관적이고 노력을 별로 기울이지 않는 정보처리과정을 통해 의사결정을 수행한다. 또한, 주어진 정보를 어떤 해석수준에서 처리하는가에 따라 선택이 달라진다. 고차원 해석수준에서 중심기능을 바탕으로 대안의 바람직성에 따라서 선택하는 반면, 저차원 해석수준에서 부가기능을 바탕으로 대안의 실행가능성에 초점을 두어 선택한다. 이와 같은 특성이 공짜효과의 크기에 미치는 영향을 살펴보는 것이 본 연구의 가장 중요한 목적이다. 자아조절자원과 해석수준에 의해서 공짜효과의 크기가 조절될 수 있다는 사실을 검증하기 위해 2개의 실험설계를 채용하였다. 두 실험 모두에서 기존연구에서 사용한 실험재(키세스와 페레로로쉐 초콜릿)를 이용했다. 실험 1은 자아조절자원 고갈 여부가 공짜효과에 미치는 영향을 검증했다. 자아조절자원 고갈과 비고갈 집단으로 나누어 공짜대안이 있는 선택과업과 그렇지 않은 과업에 할당했다. 자아조절자원이 고갈되지 않은 집단에서 공짜효과가 확실하지만, 자아조절자원이 고갈된 집단에서 공짜효과가 약해진다는 것을 밝혔다. 실험 2는 해석수준이 공짜효과에 미치는 영향을 검증했다. 실험 2는 '왜(why)'와 '어떻게(how)'를 이용해 해석수준을 조작했으며, 실험 1과 유사하게 공짜대안이 존재하는 의사결정과업과 존재하지 않는 과업에 할당한 뒤 공짜대안 선택에 미치는 영향을 확인하였다. 고차원 해석수준의 집단은 저차원 해석수준의 집단에 비하여 공짜제품 선택비율이 낮았다.

  • PDF

경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발 (Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique)

  • 김명균;조윤호
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.59-77
    • /
    • 2012
  • 기업의 성장성, 수익성, 안정성, 활동성, 생산성 등에 대한 다양한 분석이 은행, 신용평가기관, 투자자 등 많은 이해관계자에 의해 실시되고 있고, 이에 대한 다양한 경영분석 지표들 또한 정기적으로 발표되고 있다. 본 연구에서는 이러한 경영분석 지표를 이용하여 어떤 기업이 가까운 미래에 유상증자를 실시하는지를 데이터마이닝을 통해 예측하고자 한다. 본 연구를 통해 어떠한 지표가 유상증자 여부를 예측하는데 도움이 되는가를 살펴 볼 것이며, 그 지표들을 이용하여 예측할 경우 그 예측의 정확도가 어느 정도인지를 분석하고자 한다. 특히 1997년 IMF 금융위기 전후로 유상증자를 결정하는 변수들이 변화하는지, 그리고 예측의 정확성에 분명한 차이가 존재하는지 분석한다. 또한 유상증자 실시 시기를 경영분석 지표 발표 후 1년 내, 1~2년 내, 2~3년 내로 나누어 예측 시기에 따라 예측의 정확성과 결정 변수들의 차이가 존재하는지도 분석한다. 658개의 유가증권상장법인의 경영분석 데이터를 이용하여 실증 분석한 결과, IMF 이후의 유상증자 예측모형이 IMF 이전의 예측모형에 비해 예측 정확도가 높았고, 학습용 데이터의 예측 정확도와 검증용 데이터의 예측 정확도 차이도 IMF 이후가 낮게 나타났다. 이러한 결과는 IMF 이후 재무자료의 정확도가 높아졌고, 기업에게 유상증자의 목적이 더욱 명확해졌다고 해석될 수 있다. 또한 예측기간이 단기인 경우 경영분석 지표 중 안전성에 관련된 지표들의 중요성이 부각되었고, 장기인 경우에는 수익성과 안전성뿐만 아니라 활동성과 생산성 관련지표도 유상증자를 예측하는 데 중요한 것으로 파악되었다. 그리고 모든 예측모형에서 산업코드가 유상증자를 예측하는 중요변수로 포함되었는데 이는 산업별로 서로 다른 유상증자 유형이 존재한다는 점을 시사한다. 본 연구는 투자자나 재무담당자가 유상증자 여부를 장단기 시점에서 예측하고자 할 때 어떠한 경영분석지표를 고려하여 분석하는 것이 바람직한지에 대한 지침을 제공하는데 그 의의가 있다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

서울.경기지역 외국인 학교 학생들의 식습관 및 급식만족도 -미국계 외국인 학교를 중심으로- (Dietary Habits and Foodservice Attitudes of Students Attending American International Schools in Seoul and Gyeonggi Area)

  • 김옥선;이영은
    • 동아시아식생활학회지
    • /
    • 제22권6호
    • /
    • pp.744-757
    • /
    • 2012
  • 본 연구를 위한 설문조사는 설립자 국적이 미국인으로 영어권 학교이면서 인가를 받은 서울 및 경기 소재 외국인 학교로 청소년기에 해당하는 초 중 고등학교 과정이 모두 개설되어 있으며, 급식소를 위탁운영하고 있는 3개교의 5학년에서 12학년을 대상으로 식습관과 급식 메뉴 및 서비스 만족도를 조사하였고, 결과를 요약하면 다음과 같다. 1. 조사대상자 중 A학교의 학생은 129명, B학교의 학생은 136명, C학교의 학생은 137명으로 나타났으며, 남학생은 130명(32.3%), 여학생은 272명(67.7%)로 나타나 여학생의 응답비율이 높았다. 학년에서는 우리나라의 중학교 1~3학년에 해당하는 7~9학년이 191명(47.5%)으로 가장 많았다. 2. 외국인 학교 학생들의 하루 평균 식사횟수는 평균 3번으로 나타났으며, 남학생은 평균 3.39번, 여학생이 2.95번으로 나타나 여성의 하루 평균 식사횟수가 남학생보다 적은 것으로 나타났다. 10~12학년의 하루 식사횟수가 3.13회로 가장 많았으며, 7~9학년이 3.08회로 적었다. 한 끼 식사를 위해 소요하는 시간은 대략 23~30분으로 조사되었으며, 식사할 때 행동은 학교, 성별, 학년 모두 가족과 대화라고 응답한 학생이 많았다. 하루 중 가장 과식하는 식사는 학교, 성별, 학년에서 모두 저녁으로 조사되었다. 아침식사 빈도에 대한 질문에서 학교에 따라서는 평균 5.10회로 나타났으며, 여학생은 평균 5.35회, 남학생은 4.59회로 조사되어 남학생의 아침식사 빈도가 낮은 것으로 나타났다. 아침 결식 이유는 시간이 없어서라고 응답한 학생이 많았다. 외식에 대한 빈도는 일주일에 평균 1.78회로 가장 많았으며, 남학생은 평균 2.15회로 여학생 1.60회보다 외식을 많이 하는 것으로 나타났다. 학년에 따라서는 5~6학년이 1.87회로 가장 많았으며, 학년이 올라갈수록 외식 빈도가 낮아지는 것으로 나타났다. 간식을 하는 이유는 학교, 성별, 학년 모두 과자를 먹고 싶어서라고 응답하였으며, 간식을 하는 시간은 점심과 저녁시간 사이라고 하였으며, 간식 아이템으로는 쿠키와 칩이 많았다. 편식을 하는 이유는 학교, 성별, 학년 모두에서 입맛에 맞지 않아서라고 응답한 학생이 많았으며, 편식을 하는 식품은 모두 생선이라고 응답하였다. 3. 외국인 학교별 급식 메뉴 만족도 모든 항목에서 세 학교 중 외국인 학생 비율이 많은 A학교의 만족도가 높게 나타났으며, 급식 메뉴 만족도 항목에서 온도의 적절성, 맛, 메뉴의 다양성, 음식 재료의 신선도 순으로 만족도 점수가 높게 나타났다. 성별에 따른 급식 메뉴 만족도에서는 남학생의 경우 음식재료의 신선도가 여학생의 경우는 메뉴의 다양성에서 가장 높은 만족도를 나타냈다. 학년에 따른 급식 메뉴 만족도에서 5~6학년의 만족도가 가장 높은 것으로 나타났으며, 음식 온도의 적절성, 맛, 메뉴의 다양성 순으로 높은 만족도를 보였다. 급식 메뉴 만족도는 전 항목에서 학년이 올라갈수록 낮아지는 경향을 보였다. 4. 외국인 학교별 급식서비스 만족도 결과에서 A학교의 만족도가 B와 C학교보다 높은 것으로 나타났으며, A학교의 경우 급식종사원이 고객에게 항상 친절하다 항목에서 가장 높은 만족도를 보였다. 성별에 따른 급식서비스 만족도 분석에서 남학생과 여학생 모두 식당의 위생 및 청결상태를 나타내는 테이블과 트레이가 청결하다 에서 높은 만족도를 나타냈으며, 불평처리가 신속하다에서 낮은 만족도를 나타냈다. 학년에 따른 급식서비스 만족도 분석 결과에서도 '테이블과 트레이가 청결하다에서 높은 만족도를 보였으며, 학년이 올라갈수록 급식서비스 모든 항목의 만족도가 낮아지는 경향을 나타냈다. 외국인 학교별 식습관 비교를 통하여 하루 식사 횟수와 아침식사의 빈도가 높을수록 외식과 간식의 빈도가 적어지는 것을 알 수 있었으며, 식사의 횟수가 부족할 경우 비만 및 과체중을 유발할 수 있으므로 1일 3끼의 규칙적인 식사의 중요성 인지를 위한 교육이 필요하며, 학생들의 기호와 관능적요소를 만족시키는 메뉴 개발로 식사의 참여율을 높이는 것이 중요할 것으로 보여진다. 간식의 경우 학교 매점 등에 비치되어 있는 식품의 구성을 제 2의 성장기인 청소년기에 도움이 될 수 있는 건강한 식품으로 바꾼다면 올바른 간식 선택에 도움을 줄 수 있을 것이다. 또한 점심식사 한 끼를 제공하는 학교급식은 정상적 발육을 위한 충분한 영양공급을 해야 하나 영양적인 급식이 제공된다고 하더라도 실제 학생들이 제공된 음식을 다 섭취하지 않는다면 의도하는 영양소 섭취와 음식을 접할 기회 및 경험, 급식을 통한 교육은 기대할 수 없게 된다. 따라서 감수성이 예민한 식습관 형성 시기에 있음을 고려하여 이들의 정확한 식습관 파악과 식단 작성 시 메뉴 및 서비스 품질 속성을 명확히 규명하고, 의사소통의 도구를 개발하여 전반적인 만족도 상승을 위해 급식업체는 끊임없는 노력이 필요할 것으로 사료된다.

사고가 시각을 바꾼다: 조절 초점에 따른 소비자 감성 기반 웹 스타일 평가 모형 및 추천 알고리즘 개발 (Individual Thinking Style leads its Emotional Perception: Development of Web-style Design Evaluation Model and Recommendation Algorithm Depending on Consumer Regulatory Focus)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.171-196
    • /
    • 2018
  • 본 연구는 디자인 영역 중 웹 스타일에 대해서 소비자 감성과 만족과의 관계를 연구했다. 기존 웹 스타일 연구들은 웹의 레이아웃과 구조도 등과 색상 등이 감성에 미치는 영향에서 연구했다. 본 연구는 기존 연구들과 차별되게 웹의 구성 요소를 배제하고 소비자의 감성 지표만을 갖고 소비자 만족과의 관계를 분석했다. 분석을 위해 검증을 위해 소비자 204명을 대상으로 40개 웹 스타일 테마를 선정, 각 소비자에게 4개씩 평가하도록 하였다. 소비자에게 평가하도록 한 감성 형용사는 18개의 대비되는 쌍을 갖는 감성 형용사로 구성하였고, 요인 분석을 통해 상위 감성 지표를 추출했다. 각 감성 지표들은 '부드러움', '모던함', '명확함', '꽉 참' 이었으며, 감성지표들이 소비자 만족에 미치는 영향이 다를 것으로 판단하여 가설을 수립했다. 분석 결과에 따라 가설 1과 2, 3은 채택되었으며, 가설 4의 경우는 기각되었다. 가설 4의 경우 기각되었지만 정의 방향이 아닌 부의 방향으로 유의한 것으로 나타났다. 이때, 조절 초점 성향이 감성이라는 정보처리 과정에서 소비자 만족에 미치는 영향이 다를 것으로 판단했다. 조절 초점 성향은 조직 행동 및 의사결정에 영향을 주기도 하며, 정치, 문화, 윤리적 판단 및 행동은 물론 광범위적 심리적 문제와 사고 프로세스, 감정적 반응에도 영향을 미친다. 때문에 각 감성 지표에 대한 조절 초점 간 차이를 확인할 필요성이 있고, 각 감성 지표에 대한 세부 가설을 수립했다. 세부 가설을 검증하기 위해 조절 회귀 분석을 수행했다. 분석 결과 가설 5는 부분적으로 지지됐고, 가설 5.3만 지지되었고, 5.4의 경우 기각되었지만 가설과의 반대 방향으로 지지되었다. '명확함'의 경우 향상 초점이 소비자 만족에 더 큰 영향을 보였고, 예방 초점일수록 '꽉 참'을 더 선호한 것으로 나타났다. 분석 결과를 바탕으로 조절 초점 성향을 향상, 예방, 중간 성향으로 3집단으로 구분, 소비자 감성 기반으로 웹 스타일에 대한 추천을 할 수 있는 알고리즘을 개발했다.

CNN 보조 손실을 이용한 차원 기반 감성 분석 (Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis)

  • 전민진;황지원;김종우
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.1-22
    • /
    • 2021
  • 텍스트를 바탕으로 한 차원 기반 감성 분석(Aspect-Based Sentiment Analysis)은 다양한 산업에서 유용성을 주목을 받고 있다. 기존의 차원 기반 감성 분석에서는 타깃(Target) 혹은 차원(Aspect)만을 고려하여 감성을 분석하는 연구가 대다수였다. 그러나 동일한 타깃 혹은 차원이더라도 감성이 나뉘는 경우, 또는 타깃이 없지만 감성은 존재하는 경우 분석 결과가 정확하지 않다는 한계가 존재한다. 이러한 문제를 해결하기 위한 방법으로 차원과 타깃을 모두 고려한 감성 분석(Target-Aspect-Sentiment Detection, 이하 TASD) 모델이 제안되었다. 그럼에도 불구하고, TASD 기존 모델의 경우 구(Phrase) 간의 관계인 지역적인 문맥을 잘 포착하지 못하고 초기 학습 속도가 느리다는 문제가 있었다. 본 연구는 TASD 분야 내 기존 모델의 한계를 보완하여 분석 성능을 높이고자 하였다. 이러한 연구 목적을 달성하기 위해 기존 모델에 합성곱(Convolution Neural Network) 계층을 더하여 차원-감성 분류 시 보조 손실(Auxiliary loss)을 추가로 사용하였다. 즉, 학습 시에는 합성곱 계층을 통해 지역적인 문맥을 좀 더 잘 포착하도록 하였으며, 학습 후에는 기존 방식대로 차원-감성 분석을 하도록 모델을 설계하였다. 본 모델의 성능을 평가하기 위해 공개 데이터 집합인 SemEval-2015, SemEval-2016을 사용하였으며, 기존 모델 대비 F1 점수가 최대 55% 증가했다. 특히 기존 모델보다 배치(Batch), 에폭(Epoch)이 적을 때 효과적으로 학습한다는 것을 확인할 수 있었다. 본 연구에서 제시된 모델로 더욱 더 세밀한 차원 기반 감성 분석이 가능하다는 점에서, 기업에서 상품 개발 및 마케팅 전략 수립 등에 다양하게 활용할 수 있으며 소비자의 효율적인 구매 의사결정을 도와줄 수 있을 것으로 보인다.

점포선택속성이 브랜드 태도에 미치는 영향에 관한 연구: 6개 메이저 브랜드 커피전문점을 중심으로 (Study on the Effects of Shop Choice Properties on Brand Attitudes: Focus on Six Major Coffee Shop Brands)

  • 이원호;김수옥;이상윤;윤명길
    • 유통과학연구
    • /
    • 제10권3호
    • /
    • pp.51-61
    • /
    • 2012
  • 본 연구는 커피 시장에 대한 시장 규모가 커지고 점차 확대되고 있는 대형 브랜드 커피전문점을 중심으로 점포선택 속성(가격, 종업원서비스, 점포의 입지, 점포 분위기)을 4가지로 규정하여, 그 선택속성들과 커피전문점 이용자의 특성이 어떠한 관계가 있는 가를 알아보자 하였으며, 또한 커피전문점의 브랜드 태도에는 어떠한 영향을 미치는 바를 조사하였다. 그 결과 이용자의 특성에 따라 차이가 났지만 점포선택속성 중 점포의 분위기와 점포입지가 점포선택 속성에 가장 큰 영향을 미치는 것으로 나타났다. 따라서 이러한 결과를 토대로 본 연구는 커피전문점이 충성고객을 확보하기 위해 어떠한 속성에 중점을 두어야 하며 아울러 소비자의 욕구에 부합되는 선택 속성을 연구하고자 한다. 특히, 유통학문의 연구방법론은 크게 2가지로 규범적 연구방법론, 실증적 연구방법론(경험적 분석기법, 통계적 분석기법)이 있는데, 이중에 본 연구는 실증적 연구방법론중에서 통계적 분석기법을 활용한다. 본 연구의 한계점으로는 첫째, 응답자의 분포가 수도권에 편중되어 있다는 것이다. 본 연구에 이용된 2차 자료를 보면 서울지역의 응답자 수는 경기도 지역에 비해 압도적으로 많았고 경기도 지역의 응답자 수 또한 6대 광역시에 비해 압도적으로 많았다. 따라서 지역 표본이 해당 지역의 모집단을 대표하는데 어느 정도의 한계가 있다고 판단된다. 둘째, 응답자의 비율을 측정척도로 사용한 점이다. 본 연구에서 점포선택속성에 대한 지각정도와 브랜드 선호도를 측정함에 있어서 응답자의 비율을 척도로 사용하였는데 이를 통해 점포선택속성과 브랜드 선호도 간의 관계, 집단 간 차이를 비교적 정확하게 규명하기에는 한계가 따른다. 따라서 향후 연구에서는 위의 한계점을 보완하고 다음과 같은 추가적인 연구가 필요할 것이라 판단된다. 커피전문점들이 점차 지방으로 확대되어 가고 있는 추세에 비추어 볼 때, 6대 광역시 뿐만 아니라 지방 소도시의 소비자들까지 포함하여 설문조사를 실행하여 1차 자료를 수집하는 것이다. 특히 설문조사에서 관련된 변수들을 리커트 척도로 측정하되 점포선택속성에 대한 지각정도, 브랜드 선호도 외에도 재 구매의도까지 포함시킬 수 있다. 따라서 상관관계분석, 다중회귀분석, 분산분석 등을 통해 더욱 정교한 실증분석을 실행하여 소비자의 태도와 행동에 대한 보다 세밀한 분석결과를 도출해야 할 것으로 사료된다.

  • PDF