• Title/Summary/Keyword: mammary epithelial cell

Search Result 86, Processing Time 0.023 seconds

The Effect of Vitamin A Derivatives on the Activity of Drug-metabolizing Enzyme in Rat Liver (Vitamin A 유도체로 인한 간의 약물대사효소 변동)

  • Lee, H.W.;Ryu, K.Z.;Ro, J.Y.;Hong, S.S.
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.65-72
    • /
    • 1982
  • It has been known that retinoids are intrinsically of critical importance for control of premalignant epithelial cell differentiation. In the absence of retinoids, normal cellular differentiation and growth does not occur in epithelia such as those of trachea and bronchi. Furthermore, it was also reported that retinoid deficiency enhanced susceptibility to chemical carcinogenesis in the respiratory system, in the bladder, and in the colon of the experimental animal. In 1974, Bollag examined the effects of synthetic retinoids in prevention of development of cancer and demonstrated synthetic retinoids to have more favorable therapeutic index than retinoic acid for causing regression of skin papilloma in mice. Therefore, it was assumed that this anticarcinogenic effect of vitamin A derivatives could be due to modification of the metabolism of the carcinogenic polycyclic hydrocarbon, which must first be activated to exert their effect. Hill and Shih reported that vitamin A compounds and analogs had inhibitory effect on drug metabolizing enzyme from liver and lung tissue of mouse and hamster. Lucy suggested that the chemoprevention effect of vitamin A derivatives is due to reaction with molecular oxygen, and it is possible that inhibition of hydroxybenzpyrene formation is a result of this property. On the other hand, butylated hydroxytoluene which is a potent antioxidant strongly inhibited the formation of mammary tumor induced by dimethylbenranthracene. Also, it was observed that this antioxidant inhibited cancer induction in rats by N-2-fluo-renylacetamide. The purpose of this experiment was to investigate the effect of vitamin A derivatives such as retinoic acid and retinoid on drug-metabolizing enzyme and to determine whether riboflavin tetrabutylate or vitamin E could prevent of modify any changes induced by vitamin A delivatives in the rats. The results obtained were as followings. 1) Body weight was significantly reduced by retinoic acid, but not by retinoid. 2) Retinoic acid markedly increased liver weight while retincid showed no effect on liver weight. Treatment of riboflavin tetrabutylate did not affect retinoic acid-induced change in both body weight and liver weight. 3) Both retinoic acid and retinoid remarkably decreased the activity of aminopyrine demethylase. Pretreatment of riboflavin tetrabutylate, however, prevented inhibitory effect of retinoic acid on the enzyme activity. 4) No significant effect of vitamin E on aminopyrine demethylase was observed in both groups treated with retinoic acid and retinoid.

  • PDF

Anti-Inflammatory Activity of Oligomeric Proanthocyanidins Via Inhibition of NF-κB and MAPK in LPS-Stimulated MAC-T Cells

  • Ma, Xiao;Wang, Ruihong;Yu, Shitian;Lu, Guicong;Yu, Yongxiong;Jiang, Caode
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1458-1466
    • /
    • 2020
  • Oligomeric proanthocyanidins (OPCs), classified as condensed tannins, have significant antioxidation, anti-inflammation and anti-cancer effects. This study was performed to investigate the anti-inflammatory effects of OPCs and the mechanism underlying these effects in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cells (MAC-T). Real-time PCR and ELISA assays indicated that OPC treatment at 1, 3 and 5 ㎍/ml significantly reduced the mRNA and protein, respectively, of oxidant indicators cyclooxygenase-2 (COX-2) (p < 0.05) and inducible nitric oxide synthase (iNOS) (p < 0.01) as well as inflammation cytokines interleukin (IL)-6 (p < 0.01), IL-1β (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.05) in LPS-induced MAC-T cells. Moreover, OPCs downregulated LPS-induced phosphorylation of p65 and inhibitor of nuclear factor kappa B (NF-κB) (IκB) in the NF-κB signaling pathway (p < 0.01), and they inhibited p65 translocation from the cytoplasm to the nucleus as revealed by immunofluorescence test and western blot. Additionally, OPCs decreased phosphorylation of p38, extracellular signal regulated kinase and c-jun NH2-terminal kinase in the MAPK signaling pathway (p < 0.01). In conclusion, the anti-inflammatory and antioxidant activities of OPCs involve NF-κB and MAPK signaling pathways, thus inhibiting expression of pro-inflammatory factors and oxidation indicators. These findings provide novel experimental evidence for the further practical application of OPCs in prevention and treatment of bovine mastitis.

Construction and Expression Analysis of Knock-in Vector for EGFP Expression in the Porcine $\beta$-Casein Gene Locus (돼지 $\beta$-Casein을 이용한 EGFP 발현 Knock-in 벡터의 구축 및 발현 검증)

  • Lee, Sang-Mi;Kim, Hey-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.205-209
    • /
    • 2008
  • This study was carried out to develop knock-in vector for EGFP (enhanced green fluorescent protein) expression in porcine $\beta$-casein locus. For construction of knock-in vector using porcine $\beta$-casein gene, we cloned the $\beta$-casein genome DNA from porcine fetal fibroblast cells, EGFP and SV40 polyA signal using PCR. The knock-in vectors consisted of a 5-kb fragment as the 5' recombination arm and a 2.7-kb fragment as the 3' recombination arm. We used the neomycin resistance gene ($neo^{r}$) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. To demonstrate EGFP expression from knock-in vector, we are transfected knock-in vector that has EGFP gene in murine mammary epithelial cell line HC11 cells with pSV2 neo plasmid. The EGFP expression was detected in HC11 cells transfected knock-in vector. This result demonstrates that this knock-in vector may be used for the development of knock-in transgenic pig.

Relationship between DNA mismatch repair and CRISPR/Cas9-mediated knock-in in the bovine β-casein gene locus

  • Kim, Seung-Yeon;Kim, Ga-Yeon;You, Hyeong-Ju;Kang, Man-Jong
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.126-137
    • /
    • 2022
  • Objective: Efficient gene editing technology is critical for successful knock-in in domestic animals. RAD51 recombinase (RAD51) gene plays an important role in strand invasion during homologous recombination (HR) in mammals, and is regulated by checkpoint kinase 1 (CHK1) and CHK2 genes, which are upstream elements of RAD51 recombinase (RAD51). In addition, mismatch repair (MMR) system is inextricably linked to HR-related pathways and regulates HR via heteroduplex rejection. Thus, the aim of this study was to investigate whether clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9)-mediated knock-in efficiency of human lactoferrin (hLF) knock-in vector in the bovine β-casein gene locus can be increased by suppressing DNA MMR-related genes (MSH2, MSH3, MSH6, MLH1, and PMS2) and overexpressing DNA double-strand break (DSB) repair-related genes (RAD51, CHK1, CHK2). Methods: Bovine mammary epithelial (MAC-T) cells were transfected with a knock-in vector, RAD51, CHK1, or CHK2 overexpression vector and CRISPR/sgRNA expression vector to target the bovine β-casein gene locus, followed by treatment of the cells with CdCl2 for 24 hours. After 3 days of CdCl2 treatment, the knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA expression levels of DNA MMR-related and DNA DSB repair-related genes were assessed by quantitative real-time PCR (RT-qPCR). Results: Treatment with CdCl2 decreased the mRNA expression of RAD51 and MMRrelated genes but did not increase the knock-in efficiency in MAC-T cells. Also, the overexpression of DNA DSB repair-related genes in MAC-T cells did not significantly affect the mRNA expression of MMR-related genes and failed to increase the knock-in efficiency. Conclusion: Treatment with CdCl2 inhibited the mRNA levels of RAD51 and DNA MMR-related genes in MAC-T cells. However, the function of MMR pathway in relation to HR may differ in various cell types or species.

Effects of the cis-Acting Element in the 3' End of Porcine $\beta$-Casein Gene on the Expression in Mammary Epithelial Cells (돼지 $\beta$-Casein 유전자의 3' 말단 부위의 cis-Acting Element가 유선 상피 세포내의 발현에 미치는 영향)

  • Lee, Hwi-Cheul;Kim, Byoung-Ju;Byun, Sung-June;Lee, Seung-Hoon;Kim, Min-Ji;Chung, Hee Kyoung;Lee, Hyun-Gi;Jo, Su-Jin;Chang, Won-Kyong;Park, Jin-Ki;Lee, Poong-Yeon
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • Tissue-specific and temporal regulation of milk protein gene expression is advantageous when creating transgenic animal that produces foreign protein into milk. Gene expression, i.e. protein production, is regulated not only by promoter strength but also mRNA stability. Especially, poly A tail length by polyadenylation affects in vivo and in vitro mRNA stability and translation efficiency of the target gene. In the present study, nucleotide sequence of 3'-UTR was analyzed to evaluate the effects of mRNA stability on the target gene expression. Based on the poly A signal of 3' -untranslated region (UTR), nucleotide sequences of putative cytoplasmic polyadenylation elements (CPEs) and downstream elements (DSEs: U-rich, G-rich, GU-rich) were analyzed and used to construct 15 luciferase reporter vectors. Each vector was transfected to HC11 and porcine mammary gland cell (PMGC) and measured for dual luciferase expression levels after 48 hours of incubation. Luciferase expression was significantly higher in construct #6 (with CPE 2, 3 and DSE 1 of exon 9) and #11 (with CPE 2, 3 and DSE 1, 2 and 3 of exon 9) than construct #1 in the PMGC. These results suggest that expression of target genes in PMGC may be effectively expressed by using the construct #6 and #11 on production of transgenic pig.

Apoptotic Effect of Proso Millet Grains on Human Breast Cancer MDA-MB-231Cells Is Exerted by Activation of BAK and BAX, and Mitochondrial Damage-mediated Caspase Cascade Activation (기장 종자 유래 추출물의 인간 유방암 MDA-MB-231 세포에 대한 세포독성에 관련된 미토콘드리아 손상-의존적 아폽토시스 유도 효과)

  • Do Youn Jun;Cho Rong Han;Young Ho Kim
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • To examine the antitumor effect of proso millet grains, whether proso millet grains exert apoptotic activity against human cancer cells was investigated. When the cytotoxicity of 80% ethanol (EtOH) extract of proso millet grains was tested against various cancer cells using MTT assay, more potent cytotoxicity was observed against human breast cancer MDA-MB-231 cells than against other cancer cells. When the EtOH extract was evaporated to dryness, dissolved in water, and then further fractionated by sequential extraction using four organic solvents (n-hexane, methylene chloride, ethyl acetate, and n-butanol), the BuOH fraction exhibited the highest cytotoxicity against MDA-MB-231 cells. Along with the cytotoxicity, TUNEL-positive apoptotic nucleosomal DNA fragmentation and several apoptotic responses including BAK/BAX activation, mitochondria membrane potential (Δψm) loss, mitochondrial cytochrome c release into the cytosol, activation of caspase-8/-9/-3, and degradation of poly (ADP-ribose) polymerase (PARP) were detected. However, human normal mammary epithelial MCF-10A cells exhibited a significantly lesser extent of sensitivity compared to malignant MDA-MB-231 cells. Irrespective of Fas-associated death domain (FADD)-deficiency or caspase-8-deficiency, human T acute lymphoblastic leukemia Jurkat cells displayed similar sensitivities to the cytotoxicity of BuOH fraction, excluding an involvement of extrinsic apoptotic mechanism in the apoptosis induction. These results demonstrate that the cytotoxicity of BuOH fraction from proso millet grains against human breast cancer MDA-MB-231 cells is attributable to intrinsic apoptotic cell death resulting from BAK/BAX activation, and subsequent mediation of mitochondrial damage-dependent activation of caspase cascade.