Browse > Article

Construction and Expression Analysis of Knock-in Vector for EGFP Expression in the Porcine $\beta$-Casein Gene Locus  

Lee, Sang-Mi (Department of Animal Science and Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University)
Kim, Hey-Min (Department of Animal Science and Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University)
Moon, Seung-Ju (Department of Animal Science and Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University)
Kang, Man-Jong (Department of Animal Science and Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University)
Publication Information
Abstract
This study was carried out to develop knock-in vector for EGFP (enhanced green fluorescent protein) expression in porcine $\beta$-casein locus. For construction of knock-in vector using porcine $\beta$-casein gene, we cloned the $\beta$-casein genome DNA from porcine fetal fibroblast cells, EGFP and SV40 polyA signal using PCR. The knock-in vectors consisted of a 5-kb fragment as the 5' recombination arm and a 2.7-kb fragment as the 3' recombination arm. We used the neomycin resistance gene ($neo^{r}$) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. To demonstrate EGFP expression from knock-in vector, we are transfected knock-in vector that has EGFP gene in murine mammary epithelial cell line HC11 cells with pSV2 neo plasmid. The EGFP expression was detected in HC11 cells transfected knock-in vector. This result demonstrates that this knock-in vector may be used for the development of knock-in transgenic pig.
Keywords
$\beta$-Casein gene; Knock-in vector; HC11 cells; Gene targeting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hamanaka H, Katoh-Fukui Y, Suzuki K, Kobayashi M, Suzuki R, Motegi Y, Nakahara Y, Takeshita A, Kawai M, Ishiguro K, Yokoyama M, Fujita SC (20- 00): Altered cholesterol metabolism in human apolipoprotein E4 knock-in mice. Hum Mol Genet 9: 353-361   DOI   ScienceOn
2 Houdebine LM (2000): Transgenic animal bioreactors. Transgenic Res 9:305-320   DOI   ScienceOn
3 Kauf AC, Kensinger RS (2002): Purification of porcine beta-casein, N-terminal sequence, quantification inmastitic milk. J Anim Sci 80:1863-1870   DOI
4 Kumar S, Clarke AR, Hooper ML, Horne DS, Law AJ, Leaver J, Springbett A, Stevenson E, Simons JP (1994): Milk composition and lactation of beta-casein- deficient mice. Proc Natl Acad Sci USA 91: 6138-6142
5 Li L, Shen W, Pan QY, Min LJ, Sun YJ, Fang YW, Deng JX, Pan QJ (2006): Nuclear transfer of goat somatic cells transgenic for human lactoferrin. Yi Chuan 28:1513-1519   DOI   ScienceOn
6 Thomas KR, Capecchi MR (1987): Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503-512   DOI   ScienceOn
7 Yanagawa Y, Kobayashi T, Ohnishi M, Kobayashi T, Tamura S, Tsuzuki T, Sanbo M,Yagi T, Tashiro F, Miyazaki J (1999): Enrichment and efficient screening of ES cells containing a targeted mutation: the use of DT-A gene with the polyadenylation signal as a negative selection maker. Transgenic Res 8:215-221   DOI   ScienceOn
8 Yu HQ, Li ZG, Liu HR, Wu GX, Cheng GX (2004): Expression of goat beta-casein gene targeting vector in mammary gland cell. Sheng Wu Gong, Cheng Xue Bao 20:21-24
9 Wang B, Zhou J (2003): Specific genetic modifications of domestic animals by gene targeting and animal cloning. Reprod Biol Endocrinol 1:103   DOI   ScienceOn
10 Chan AW (1999): Transgenic animals: current and alternative strategies. Cloning 1:25-46   DOI
11 Rodriguez A, Castro FO, Aguilar A, Ramos B, Del Barco DG, Lleonart R, De laFuente J (1995): Expression of active human erythropoietin in the mammary gland of lactatingtransgenic mice and rabbits. Biol Res 28:141-153
12 Richa J, Lo CW (1989): Introduction of human DNA into mouse eggs by injection of dissected chromosomefragments. Science 245:175-177   DOI
13 Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002): Targeted disruption of the alpha 1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251-255   DOI   ScienceOn
14 Clark AJ, Burl S, Denning C, Dickinson P (2000): Gene targeting in livestock: a preview. Transgenic Res 9:263-275   DOI   ScienceOn
15 Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G (2000): Transgenic technology in farm animals-progress and perspectives. Exp Physiol 85:615-625   DOI   ScienceOn
16 Brophy B, Smolenski G, Wheeler T, Wells D, L' Huillier P, Laible G (2003): Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 21:157-162   DOI   ScienceOn
17 Houdebine LM, Attal J, Vilotte JL (2002): Vector design for transgene expression. In: Pinkert CA. Transgenic Animal Technology. 2nd ed. Academic press, California, USA, pp 420-458
18 Van Cott KE, Butler SP, Russell CG, Subramanian A, Lubon H, Gwazdauskas FC, Knight J, Drohan WN, Velander WH (1999): Transgenic pigs as bioreactors: a comparison of gamma-carboxylation of glutamicacid in recombinant human protein C and factor IX by the mammary gland. Genet Anal 15: 155-160   DOI   ScienceOn
19 Ko JH, Lee CS, Kim KH, Pang MG, Koo JS, Fang N, Koo DB, Oh KB, Youn WS, ZhengGD, Park JS, Kim SJ, Han YM, Choi IY, Lim J, Shin ST, Jin SW, Lee KK, Yoo OJ (2000): Production of biologically active human granulocyte colony stimulating factor in the milk of transgenic goat. Transgenic Res 9:215-222   DOI   ScienceOn
20 Shen W, Lan G, Yang X, Li L, Min L, Yang Z, Tian L, Wu X, Sun Y, Chen H, Tan J, Deng J, Pan Q (2007): Targeting the exogenous htPAm gene on goat somatic cell beta-casein locus fortransgenic goat production. Mol Reprod Dev 74:428-434   DOI   ScienceOn
21 Shen W, Min LJ, Li L, Pan QJ, Wu XJ, Zhou YR, Deng JX (2005): High-efficient gene targeting of goat mammary epithelium cell by themulti-selection mechanism. Yi Chuan Xue Bao 32:366-371