• Title/Summary/Keyword: maltotriose

Search Result 96, Processing Time 0.035 seconds

Characteristics of Sikhe Produced with Malt of Naked Barley, Covered Barley and Wheat (쌀보리, 겉보리 및 밀엿기름에 의한 식혜 제조시 특성)

  • Suh, Hyung-Joo;Chung, Soo-Hyun;Whang, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.716-721
    • /
    • 1997
  • In order to improve the quality of sikhe, Korean traditional sweat rice drink, wheat malt, covered barley malt and naked barley malt were used to prepare sikhe. The optimum temperature of amylase was $60^{\circ}C$ in malt extract. After heat treatment of amylase for 2 hr at $70^{\circ}C$, residual activity of amylase was less than 20% in malt extract. Amylase activity during sikhe preparation was decreased gradually. The sikhe saccharifyed for 6 hr had $6250{\sim}25029$ units of amylase acitivity. The contents of glucose, maltose and maltotriose were increased with increasing time. Maltose content was the highest, followed by glucose and maltotriose. The pH and titrable acidity were slightly changed. The sweetness of sikhe prepared with wheat was 11.3%, and others were 11.1% and 10.4%. The sikhe prepared with naked barley was evaluated the most palatable sikhe.

  • PDF

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Chromatographic Separation of Maltopentaose from Maltooligosaccharides

  • Lee, Jae-Wook;Kwon, Tae-Ouk;Moon, Il-Shik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • An experimental study on the chromatographic separation of maltopentaose from a mixture, including glucose, maltose, maltotriose, and maltopentaose, was carried out in a nonionic polymeric sorbent column while varying the operating conditions, such as the solution pH, buffer contents, and isopropyl alcohol (1PA) concentration. Unlike the pH and buffer contents, the IPA concentration had a Significant impact on the single component chromatograms for maltopentaose. The retention times of the maltooligosaccharides with the nonionic polymeric sorbent Sp207 were in the following order: glucose < maltose < maltotriose < maltopentaose. From the experimental binary, ternary, and quaternary chromatograms, gradient chromatographic separation with a changing IPA concentration as a function of time was required to obtain high-purity maltopentaose and reduce the elution time.

Construction of Bifunctional Fusion Enzyme between Maltooligosyltrehalose Synthase and Maltooligosyltrehalose Trehalohydrolase of Sulfolobus acidocaldarius and Overexpression in E. coli

  • Kim, Chung Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.240-245
    • /
    • 2000
  • Two genes encoding maltooligosyltrehalose synthase (SaMTS) and maltooligosyltrehalose trehalohydrolase (SaMTH) were isolated from a hyperthermophilic microorganism, Sulfolobus acidocaldarius (ATCC 49462). ORFs of the SaMTS and SaMTH genes are 2,163 and 1,671 bp long and encode 720 and 556 amino acid residues, respectively. A bifunctional fusion enzyme (SaMTSH) was constructed through the gene fusion of SaMTS and SaMTH. Recombinant SaMTS, SaMTH, and SaMTSH fusion enzyme were overexpressed in E. coli BL21. SaMTS and SaMTH produced trehalose and maltotriose from maltopentaose in a sequential reaction. SaMTSH fusion enzyme catalyzed the sequential reaction in which the formation of maltotriosyltrehalose was followed by hydrolysis leading to the synthesis of trehalose and maltotriose. The SaMTSH fusion enzyme showed the highest activity at pH 5.0-5.5 and $70-75^{\circ}C$. SaMTS, SaMTH, and SaMTSH fusion enzyme were active in soluble starch, which resulted in the production of trehalose.

  • PDF

Inhibition effect of sugar concentrations on the cell growth andthe pullulan production of aureobasidium pullulans (Aureobasidium pullulans의 성장 및 플루란 생산에 미치는 고농도당의 저해효과)

  • 신용철;한종권;김영호;이현수;변시명
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.360-366
    • /
    • 1987
  • For the production of pullulan from the high concentration of sugar, the utilization of sugars by a pullulan-producing fungus, Aureobasidium pullulans was examined. A. pullulans showed the different utilization patterns for sugars such as sucrose, maltose, and maltotriose. Especially for maltotriose, the hydrolysis of sugar was accompanied by a transferase activity. Glucose and maltose showed the inhibitory effect on the cell growth and the pullulan production at the sugar concentration higher than 0.28M, but sucrose showed the inhibitory effect at the sugar concentration higher than 0.14M. Among the sugars examined, sucrose gave the best result for the pullulan production. 27.5g/l of pullulan was obtained from 5% sucrose.

  • PDF

Purification, Characterization, and Partial Primary Sequence of a Major-Maltotriose-producing $\alpha$-Amylase, ScAmy43, from Sclerotinia sclerotiorum

  • Ben Abdelmalek-Khedher, Imen;Urdad, Maria Camino;Limam, Ferid;Schmitter, Jean Marie;Marzouki, M. Nejib;Bressollier, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1555-1563
    • /
    • 2008
  • A novel $\alpha$-amylase ($\alpha$-1,4-$\alpha$-D-glucan glucanohydrolase, E.C. 3.2.1.1), ScAmy43, was found in the culture medium of the phytopathogenic fungus Sclerotinia sclerotiorum grown on oats flour. Purified to homogeneity, ScAmy43 appeared as a 43 kDa monomeric enzyme, as estimated by SDS-PAGE and Superdex 75 gel filtration. The MALDI peptide mass fingerprint of ScAmy43 tryptic digest as well as internal sequence analyses indicate that the enzyme has an original primary structure when compared with other fungal a-amylases. However, the sequence of the 12 N-terminal residues is homologous with those of Aspergillus awamori and Aspergillus kawachii amylases, suggesting that the new enzyme belongs to the same GH13 glycosyl hydrolase family. Assayed with soluble starch as substrate, this enzyme displayed optimal activity at pH 4 and $55^{\circ}C$ with an apparent $K_m$ value of 1.66 mg/ml and $V_{max}$ of 0.1${\mu}mol$glucose $min^{-1}$ $ml^{-1}$. ScAmy43 activity was strongly inhibited by $Cu^{2+}$, $Mn^{2+}$, and $Ba^{2+}$, moderately by $Fe^{2+}$, and was only weakly affected by $Ca^{2+}$ addition. However, since EDTA and EGTA did not inhibit ScAmy43 activity, this enzyme is probably not a metalloprotein. DTT and $\beta$-mercaptoethanol strongly increased the enzyme activity. Starting with soluble starch as substrate, the end products were mainly maltotriose, suggesting for this enzyme an endo action.

Properties of Carbohydrase Prepared from Lipomyces starkeyi JLC26 (Lipomyces starkeyi JLC26에서 유래된 Carbohydrase의 특성)

  • Jun, Sun-Mee;Kim, Do-Man;Kim, Do-Won
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.713-717
    • /
    • 1999
  • We have isolated a dextranase and amylase constitutive and hyper-producing mutant, Lipomyces starkeyi JLC26, from Lipomyces starkeyi ATCC74054 after mutation using UV irradiation. After partial purification of dextranase and amylase (together DXAMase;both activities were always co-purified) by ammonium sulfate precipitation, CM-Sepharose column chromatography, the specific activities of amylase and dextranase were 5367 and 3045 unit/mg, respectively. The pH effects for activity and stabiligy of both enzymes were similar to each other: Optimum pH and temperature for activity sere at 5.5 and 37$^{\circ}C$ and optimum ranges for stability were at pH 2.5-5.5 and 4-55$^{\circ}C$, respectively. The reaction end products of dextranase and amylase activities were found to the typical for those of endo-dextranase and endo-amylase. When the carbohydrase and maltotriose were reacted, glucose, maltose, isomaltose, maltotriose, panose and ${\alpha}(1{\rightarrow}6)$glucosylmaltotriose were produced by disproportionation reaction.

  • PDF

A Study on Sugars in Korean Sweet Rice Drink "Sikhye"(I) -Sugar Content and Its Composition- (식혜의 이소말토올리고당에 관한 연구(I) -정제 및 구조해석-)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.82-86
    • /
    • 1997
  • A Korean traditional sweet rice drink "Sikye" was produced from the raw material of 20% of rice and 4% malt supplemented with 2l of tap water, by incubating the mixture at 6$0^{\circ}C$ for 7 hours. The product was found to contain 11.01% of maltose, 5.31% of isomaltooligosaccharides, 1.75% of maltotriose and 0.28% of glucose. Maltose, maltotriose and isomaltooligosaccharides in Sikye were seperated by ethanol (3 volume) precipitation repeated three times, followed by gel chromatography of Toyopearl HW-40S. 1H-NMR analysis revealed that the products of G2 and G3 size had only $\alpha$-1, 4-glucosidic linkage. but isomaltooligosaccharides showed both signal of $\alpha$-1, 4 and $\alpha$-1, 6-glucosidic linkage with its estimation ratio of 5:1. Isomaltooligosaccharides were hydrolyzed to produce maltooligosaccharide series from maltose to maltohexaose by pullulanase. These results, suggest that isomaltooligosaccharides were constructed by maltohexaose main chain with maltose or maltotriose and maltotetraose side chain.ide chain.

  • PDF

Gene Cluster Analysis and Functional Characterization of Cyclomaltodextrinase from Listeria innocua (Listeria innocua 유래 cyclomaltodextrinase의 유전자 클러스터 구조 및 효소 특성)

  • Jang, Myoung-Uoon;Jeong, Chang-Ku;Kang, Hye-Jeong;Kim, Min-Jeong;Lee, Min-Jae;Son, Byung Sam;Kim, Tae-Jip
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.363-369
    • /
    • 2016
  • A putative cyclomaltodextrinase gene (licd) was found from the genome of Listeria innocua ATCC 33090. The licd gene is located in the gene cluster involved in maltose/maltodextrin utilization, which consists of various genes encoding maltose phosphorylase and sugar ABC transporters. The structural gene encodes 591 amino acids with a predicted molecular mass of 68.6 kDa, which shares less than 58% of amino acid sequence identity with other known CDase family enzymes. The licd gene was cloned, and the dimeric enzyme with C-terminal six-histidines was successfully produced and purified from recombinant Escherichia coli. The enzyme showed the highest activity at pH 7.0 and 37℃. licd could hydrolyze β-cyclodextrin, starch, and maltotriose to mainly maltose, and it cleaved pullulan to panose. It could also catalyze the hydrolysis of acarbose to glucose and acarviosine-glucose. In particular, it showed significantly higher activity towards β-cyclodextrin and maltotriose than towards starch and acarbose. licd also showed transglycosylation activity, producing α-(1,6)- and/or α-(1,3)-linked transfer products from the acarbose donor and α-methyl glucopyranoside acceptor.

Functional expression and enzymatic characterization of cyclomaltodextrinase from Streptococcus pyogenes (Streptococcus pyogenes 유래 cyclomaltodextrinase 유전자의 발현 및 효소 특성)

  • Jang, Myoung-Uoon;Kang, Hye-Jeong;Jeong, Chang-Ku;Oh, Gyo Won;Lee, Eun-Hee;Son, Byung Sam;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.208-215
    • /
    • 2017
  • A cyclomaltodextrinase (SPCD) gene was cloned from Streptococcus pyogenes ATCC 700294. Its open reading frame consists of 567 amino acids (66.8 kDa), which shows less than 37% of amino acid sequence identity with the other CDase-family enzymes. The homo-dimeric SPCD with C-terminal six-histidines was expressed and purified from Escherichia coli. It showed the highest activity at pH 7.5 and $45^{\circ}C$, respectively. SPCD has the broad substrate specificities against ${\beta}$-cyclodextrin, starch, and maltotriose to produce mainly maltose, whereas it hydrolyzes pullulan to panose. It can also catalyze the hydrolysis of acarbose to glucose and acarviosine-glucose. Interestingly, it showed much higher activity on ${\beta}$-cyclodextrin and acarbose than that on starch, pullulan, or maltotriose, which makes SPCD distinguished from common CDase-family enzymes. Although SPCD has significantly high acarbose-hydrolyzing activity, it showed negligible transglycosylation activity.