• Title/Summary/Keyword: malicious script

Search Result 29, Processing Time 0.027 seconds

JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code using Internal Function Hooking

  • Kim, Hyoung-Chun;Choi, Young-Han;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.766-783
    • /
    • 2012
  • Recently, many malicious users have attacked web browsers using JavaScript code that can execute dynamic actions within the browsers. By forcing the browser to execute malicious JavaScript code, the attackers can steal personal information stored in the system, allow malware program downloads in the client's system, and so on. In order to reduce damage, malicious web pages must be located prior to general users accessing the infected pages. In this paper, a novel framework (JsSandbox) that can monitor and analyze the behavior of malicious JavaScript code using internal function hooking (IFH) is proposed. IFH is defined as the hooking of all functions in the modules using the debug information and extracting the parameter values. The use of IFH enables the monitoring of functions that API hooking cannot. JsSandbox was implemented based on a debugger engine, and some features were applied to detect and analyze malicious JavaScript code: detection of obfuscation, deobfuscation of the obfuscated string, detection of URLs related to redirection, and detection of exploit codes. Then, the proposed framework was analyzed for specific features, and the results demonstrate that JsSandbox can be applied to the analysis of the behavior of malicious web pages.

The Real-Time Detection of the Malicious JavaScript (실시간으로 악성 스크립트를 탐지하는 기술)

  • Choo, Hyun-Lock;Jung, Jong-Hun;Kim, Hwan-Kuk
    • Journal of Internet Computing and Services
    • /
    • v.16 no.4
    • /
    • pp.51-59
    • /
    • 2015
  • JavaScript is a popular technique for activating static HTML. JavaScript has drawn more attention following the introduction of HTML5 Standard. In proportion to JavaScript's growing importance, attacks (ex. DDos, Information leak using its function) become more dangerous. Since these attacks do not create a trail, whether the JavaScript code is malicious or not must be decided. The real attack action is completed while the browser runs the JavaScript code. For these reasons, there is a need for a real-time classification and determination technique for malicious JavaScript. This paper proposes the Analysis Engine for detecting malicious JavaScript by adopting the requirements above. The analysis engine performs static analysis using signature-based detection and dynamic analysis using behavior-based detection. Static analysis can detect malicious JavaScript code, whereas dynamic analysis can detect the action of the JavaScript code.

An Analysis Technique for Encrypted Unknown Malicious Scripts (알려지지 않은 악성 암호화 스크립트에 대한 분석 기법)

  • Lee, Seong-Uck;Hong, Man-Pyo
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.5
    • /
    • pp.473-481
    • /
    • 2002
  • Decryption of encrypted malicious scripts is essential in order to analyze the scripts and to determine whether they are malicious. An effective decryption technique is one that is designed to consider the characteristics of the script languages rather than the specific encryption patterns. However, currently X-raying and emulation are not the proper techniques for the script because they were designed to decrypt binary malicious codes. In addition to that, heuristic techniques are unable to decrypt unknown script codes that use unknown encryption techniques. In this paper, we propose a new technique that will be able to decrypt malicious scripts based on analytical approach. we describe its implementation.

A Malware Detection Method using Analysis of Malicious Script Patterns (악성 스크립트 패턴 분석을 통한 악성코드 탐지 기법)

  • Lee, Yong-Joon;Lee, Chang-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.613-621
    • /
    • 2019
  • Recently, with the development of the Internet of Things (IoT) and cloud computing technologies, security threats have increased as malicious codes infect IoT devices, and new malware spreads ransomware to cloud servers. In this study, we propose a threat-detection technique that checks obfuscated script patterns to compensate for the shortcomings of conventional signature-based and behavior-based detection methods. Proposed is a malicious code-detection technique that is based on malicious script-pattern analysis that can detect zero-day attacks while maintaining the existing detection rate by registering and checking derived distribution patterns after analyzing the types of malicious scripts distributed through websites. To verify the performance of the proposed technique, a prototype system was developed to collect a total of 390 malicious websites and experiment with 10 major malicious script-distribution patterns derived from analysis. The technique showed an average detection rate of about 86% of all items, while maintaining the existing detection speed based on the detection rule and also detecting zero-day attacks.

Evaluations of AI-based malicious PowerShell detection with feature optimizations

  • Song, Jihyeon;Kim, Jungtae;Choi, Sunoh;Kim, Jonghyun;Kim, Ikkyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.549-560
    • /
    • 2021
  • Cyberattacks are often difficult to identify with traditional signature-based detection, because attackers continually find ways to bypass the detection methods. Therefore, researchers have introduced artificial intelligence (AI) technology for cybersecurity analysis to detect malicious PowerShell scripts. In this paper, we propose a feature optimization technique for AI-based approaches to enhance the accuracy of malicious PowerShell script detection. We statically analyze the PowerShell script and preprocess it with a method based on the tokens and abstract syntax tree (AST) for feature selection. Here, tokens and AST represent the vocabulary and structure of the PowerShell script, respectively. Performance evaluations with optimized features yield detection rates of 98% in both machine learning (ML) and deep learning (DL) experiments. Among them, the ML model with the 3-gram of selected five tokens and the DL model with experiments based on the AST 3-gram deliver the best performance.

Detection of Malicious PDF based on Document Structure Features and Stream Objects

  • Kang, Ah Reum;Jeong, Young-Seob;Kim, Se Lyeong;Kim, Jonghyun;Woo, Jiyoung;Choi, Sunoh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.85-93
    • /
    • 2018
  • In recent years, there has been an increasing number of ways to distribute document-based malicious code using vulnerabilities in document files. Because document type malware is not an executable file itself, it is easy to bypass existing security programs, so research on a model to detect it is necessary. In this study, we extract main features from the document structure and the JavaScript contained in the stream object In addition, when JavaScript is inserted, keywords with high occurrence frequency in malicious code such as function name, reserved word and the readable string in the script are extracted. Then, we generate a machine learning model that can distinguish between normal and malicious. In order to make it difficult to bypass, we try to achieve good performance in a black box type algorithm. For an experiment, a large amount of documents compared to previous studies is analyzed. Experimental results show 98.9% detection rate from three different type algorithms. SVM, which is a black box type algorithm and makes obfuscation difficult, shows much higher performance than in previous studies.

Design and Implementation of a ML-based Detection System for Malicious Script Hidden Corrupted Digital Files (머신러닝 기반 손상된 디지털 파일 내부 은닉 악성 스크립트 판별 시스템 설계 및 구현)

  • Hyung-Woo Lee;Sangwon Na
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.1-9
    • /
    • 2023
  • Malware files containing concealed malicious scripts have recently been identified within MS Office documents frequently. In response, this paper describes the design and implementation of a system that automatically detects malicious digital files using machine learning techniques. The system is proficient in identifying malicious scripts within MS Office files that exploit the OLE VBA macro functionality, detecting malicious scripts embedded within the CDH/LFH/ECDR internal field values through OOXML structure analysis, and recognizing abnormal CDH/LFH information introduced within the OOXML structure, which is not conventionally referenced. Furthermore, this paper presents a mechanism for utilizing the VirusTotal malicious script detection feature to autonomously determine instances of malicious tampering within MS Office files. This leads to the design and implementation of a machine learning-based integrated software. Experimental results confirm the software's capacity to autonomously assess MS Office file's integrity and provide enhanced detection performance for arbitrary MS Office files when employing the optimal machine learning model.

Detection of Unknown Malicious Scripts Using Static Analysis (정적 분석을 이용한 알려지지 않은 악성 스크립트 감지)

  • Lee, Seong-Uck;Bae, Byung-Woo;Lee, Hyong-Joon;Cho, Eun-Sun;Hong, Man-Pyo
    • The KIPS Transactions:PartC
    • /
    • v.9C no.5
    • /
    • pp.765-774
    • /
    • 2002
  • Analyzing the code using static heuristics is a widely used technique for detecting unknown malicious codes. It decides the maliciousness of a code by searching for some fragments that had been frequently found in known malicious codes. However, in script codes, it tries to search for sequences of method calls, not code fragments, because finding such fragments is much difficult. This technique makes many false alarms because such method calls can be also used in normal scripts. Thus, static heuristics for scripts are used only to detect malicious behavior consisting of specific method calls which is seldom used in normal scripts. In this paper. we suggest a static analysis that can detect malicious behavior more accurately, by concerning not only the method calls but also parameters and return values. The result of experiments show that malicious behaviors, which were difficult to detect by previous works, due to high false positive, will be detected by our method.

The Analysis Engine for Detecting The Malicious JavaScript (악성 자바 스크립트를 탐지하는 분석 엔진)

  • Choo, Hyun-lock;Jung, Jong-Hun;Im, Chae-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.388-391
    • /
    • 2014
  • JavaScript는 AJAX와 같은 기술을 통해 정적인 HTML에 동적인 기능을 제공하며 그 쓰임새는 HTML5 등장 이후 더욱 주목받고 있는 기술이다. 그와 비례하여 JavaScript를 이용한 공격( DoS 공격, 기밀정보 누출 등 ) 또한 큰 위험으로 다가오고 있다. 이들 공격은 실제적인 흔적을 남기지 않기 때문에 JavaScript 코드 상에서 악성 행위를 판단해야 하며, 웹브라우저가 JavaScript 코드를 실행해야 실제적인 행위가 일어나기 때문에 이를 방지하기 위해선 실시간으로 악성 스크립트를 분별하고 파악할 수 있는 분석 기술이 필요하다. 본 논문은 이런 악성 스크립트를 탐지하는 분석엔진 기술을 제안한다. 이 분석 엔진은 시그니쳐 기반 탐지 기술을 이용한 정적 분석과 행위 기반 탐지 기술을 사용하는 동적 분석으로 이루어진다. 정적 분석은 JavaScript 코드에서 악성 스크립트 코드를 탐지하고 동적 분석은 JavaScript 코드의 실제 행위를 분석하여 악성 스크립트를 판별한다.

Supplementary Event-Listener Injection Attack in Smart Phones

  • Hidhaya, S. Fouzul;Geetha, Angelina;Kumar, B. Nandha;Sravanth, Loganathan Venkat;Habeeb, A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4191-4203
    • /
    • 2015
  • WebView is a vital component in smartphone platforms like Android, Windows and iOS that enables smartphone applications (apps) to embed a simple yet powerful web browser inside them. WebView not only provides the same functionalities as web browser, it, more importantly, enables a rich interaction between apps and webpages loaded inside the WebView. However, the design and the features of WebView lays path to tamper the sandbox protection mechanism implemented by browsers. As a consequence, malicious attacks can be launched either against the apps or by the apps through the exploitation of WebView APIs. This paper presents a critical attack called Supplementary Event-Listener Injection (SEI) attack which adds auxiliary event listeners, for executing malicious activities, on the HTML elements in the webpage loaded by the WebView via JavaScript Injection. This paper also proposes an automated static analysis system for analyzing WebView embedded apps to classify the kind of vulnerability possessed by them and a solution for the mitigation of the attack.