• Title/Summary/Keyword: maleic anhydride

Search Result 256, Processing Time 0.032 seconds

Maleic Anhydride Effect on the Properties of Poly(ethrlene terephthalate)/Maleic Anhydride-Grafted PP/Poly(styrene-co-maleic anhydride) Ternary Blends (Poly(ethylene terephthalate)/Maleic anhydride-grafted PP/Poly(styrene-co-maleic anhydride) 삼상블렌드의 성질에 있어서의 무수말레인산의 효과)

  • 윤관한;이형욱;박오옥
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.226-232
    • /
    • 2001
  • The properties of poly(ethylene terephthalate) (PET)/maleic anhydride-grafted polypropylene (MAgPP)/poly(styrene-co-maleic anhydride)(PScMA) ternary blend were investigated. The ternary blend was immiscible based on the glass transition temperatures measured by dynamic mechanical analyzer (DMA). The degradation of MAgPP during melt mixing for 30 min at 280$^{\circ}C$ did not affect the properties of the ternary blend. The interaction among the components was confirmed from the rheological properties, which was increased with the PSCMA contents. In terms of the mechanical properties, it was observed to satisfy the mixture rule for a multiple system.

  • PDF

Improvement of the Filler Dispersion in Silica-Filled SBR Compounds Using Low Molecular Weight Polybutadiene Treated with Maleic Anhydride (Maleic Anhydride로 처리된 저분자량 폴리부타디엔을 이용한 실리카로 보강된 SBR 배합물에서 충전제 분산성 항상)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • Influence of low molecular weight polybutadiene (liquid PB) treated with maleic anhydride on properties of a silica-filled SBR compounds was studied. Silica dispersion was improved by adding liquid PB. The liquid PB treated with maleic anhydride (liquid MAPB) was found to be more effective for the improvement of silica dispersion than the liquid PB without maleic anhydride (liquid NPB). Viscosity of the SBR compound decreased by adding the liquid PB. The crosslink density decreased with increase of the liquid PB content and the cure rate became slower with increasing the liquid PB content. Considering the experimental results, it was believed that addition of small amount of the liquid PB (less than 5 phr) was desirable to improve properties of silica-filled SBR compounds.

Formaldehyde Free Cross-linking Agents Based on Maleic Anhydride Copolymers

  • Yoon, Kee-Jong;Woo, Jong-Hyung;Seo, Young-Sam
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.182-187
    • /
    • 2003
  • Low molecular weight copolymers of maleic anhydride and vinyl acetate were prepared to develop formaldehyde free cross-linking agents. Since lower molecular weight is favorable for efficient penetration of the finishing agent into the cotton fibers in the padding process, the concentration of the initiator, chain transfer agent and the monomer ratios were varied to obtain copolymers of low molecular weights. The prepared polymers were characterized by GPC, $^1{H-NMR}$, FTIR, DSC and TGA. Copolymers of molecular weights of 2 000 to 10 000 were obtained and it was found that the most efficient method of controlling the molecular weight was by varying the monomer ratios. Poly(maleic anhydride-co-vinyl acetate) did not dissolve in water, but the maleic anhydride residue hydrolyzed within a few minutes to form poly(maleic acid-co-vinyl acetate) and dissolved in water. However, the maleic acid units undergo dehydration to form anhydride groups on heating above ${160}^{\circ}C$ to some extent even in the absence of catalysts. The possibility of using the copolymers as durable press finishing agent for cotton fabric was investigated. Lower molecular weight poly(maleic anhydride-co-vinyl acetate) copolymers were more efficient in introducing crease resistance, which appears to be due to the more efficient penetration of the cross-linking agent into cotton fabrics. The wrinkle recovery angles of cotton fabrics treated with poly(maleic anhydride-co-vinyl acetate) copolymers were slightly lower than those treated with DMDHEU and were higher when higher curing temperatures or higher concentrations of copolymer were used, and when catalyst, $NaH_2$$PO_2$, was added. The strength retention of the poly(maleic anhydride-co-vinyl acetate) treated cotton fabrics was excellent.

An Efficient Synthesis of Alkoxyallylthiopyridazine Derivatives from Maleic Anhydrides (Maleic Anhydrides로부터 Alkoxyallylthiopyridazines 유도체의 효과적 합성)

  • Lee, Jae-In;Yun, Young-Sook
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.609-615
    • /
    • 2004
  • Alkoxyallylthiopyridazine derivatives which exhibit superior effect for the treatment of hepatic diseases were synthesized from maleic anhydrides. The reaction of maleic anhydrides with hydrazine monohydrate in aq HCl at reflux afforded dihydroxypyridazines, which were transformed to dichloropyridazines with phosphorus oxychloride. The substitution of the first chlorine atom in dichloropyridazines proceeded selectively with alcoholic sodium alkoxides in THF to afford alkoxychloropyridazines, which were converted to alkoxyallylthiopyridazines with lithium 2-propene-1-thiolate in high yields.

A Highly Efficient and Selective Nickel/Clay Catalyst for Liquid Phase Hydrogenation of Maleic Anhydride to Succinic Anhydride

  • Tian, Weiping;Guo, Shaofei;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1643-1646
    • /
    • 2012
  • Three Ni-based catalysts with different clay as support were prepared and tested in the hydrogenation of maleic anhydride, among which Ni/clay1 showed best activity and selectivity. Over Ni/clay1 catalyst prepared by impregnation method, 97.14% conversion of maleic anhydride and 99.55% selectivity to succinic anhydride were obtained at $180^{\circ}C$ under a pressure of 1 MPa. Catalytic activity was greatly influenced by the temperature and weighted hourly space velocity. Catalyst deactivation studies showed that this catalyst have a long life time, the yield of MA still higher than 90% even after a reaction time of 60 h. X-ray diffraction (XRD) and $H_2$ temperature programmed reduction (TPR) were use to investigate the properties of the catalyst. XRD and TPR studies showed that Ni was present as $Ni^{2+}$ on the support, which indicated that there was no elemental nickel ($Ni^0$) and $Ni_2O_3$ in the unreduced samples. The formation of Ni was strong impact on catalytic activity.

Studies on the Styrenic Polymers(1), Imidization of Poly(styrene-co-maleic anhydrides) and Their Thermal Properties (Styrenic Polymers연구(1), Poly(styrene-co-maleic anhydride)의 이미드화와 열적 성질)

  • Ahn, Tae-Oan;Park, Lee-Soon;Lee, Sang-Soo;Kim, Gi-Heon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.179-187
    • /
    • 1992
  • Poly(styrene-co-maliec anhydride) was reacted with aromatic amines such as aniline, p-toluidine, and p-chloroaniline in 10% (w/w) DMF solution to convert maleic anhydride units into maleimides. Optimum reaction conditions for cyclodehydration step of imide ring formation were : (a) reaction temp. of $80^{\circ}C$ (b) mole ratios of cyclodehydration agents : anhydride units in SMA/acetic anhydride/sodium acetate/triethyl amine= 1.0/2.0/0.2/1.1. $T_g$of SMI(imide modified SMA) was increased with increasing degree of imidization, but $T_g$leveled off in the early stage of imide content. And $T_g$of SMI was increased with the following order of amines used for imidization reagents : aniline < p-toluidine < p-chloroaniline.

  • PDF

Effects of maleic anhydride content on mechanical properties of carbon fibers-reinforced maleic anhydride-grafted-poly-propylene matrix composites

  • Kim, Hyun-Il;Han, Woong;Choi, Woong-Ki;Park, Soo-Jin;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.20
    • /
    • pp.39-46
    • /
    • 2016
  • In this work, the effects of maleic anhydride (MA) content on mechanical properties of chopped carbon fibers (CFs)-reinforced MA-grafted-polypropylene (MAPP) matrix composites. A direct oxyfluorination on CF surfaces was applied to increase the interfacial strength between the CFs and MAPP matrix. The mechanical properties of the CFs/MAPP composites are likely to be different in terms of MA content. Surface characteristics were observed by scanning electron microscope, Fourier transform infrared spectroscopy, and single fiber contact angle method. The mechanical properties of the composites were also measured by a critical stress intensity factor (KIC). From the KIC test results, the KIC values were increased to a maximum value of 3.4 MPa with the 0.1 % of MA in the PP, and then decreased with higher MA content.

Effect of Compatibilizers on Mechanical Properties of Wood-Plastic Composites Using Styrene Polymers as Matrix Polymers (스티렌계 수지(樹脂)를 매트릭스로 사용한 목재 - 플라스틱 복합체(複合體)의 물성(物性)에 미치는 상용화제(相溶化劑)의 효과(效果))

  • Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.31-37
    • /
    • 1993
  • Composites of styrene polymers with woody fibers were prepared, and the effect of compatibilizers on their mechanical properties was evaluated. To improve the compatibility of wood fibers and the matrix polymers, styrene-maleic anhydride copolymer(SMA) and maleic anhydride-modified polymers were used as compatibilizers. As results, maleic anhydride-modified polystyrene and SMA were proved to improve the tensile strength of the molded composites, and also were evaluated as good compatibilizers for the wood fiber polystyrene composite. Cellulosic fiber (dissolving pulp) provided better reinforcement than lignocellulosic fiber(thermomechanical pulp). On the contrary in the case of the composite of wood fiber and acrylonitrile-butadiene styrene copolymer(ABS), SMA and maleic anhydride-modified acrylonitrile-butadiene-styrene copolymer(MABS) did not act as compatibilizers. However, MABS was evaluated as a good polymer matrix to make wood fiber reinforced composite. The tensile properties of the composites of wood fiber and MABS were superior than those of wood fiber-ABS composites.

  • PDF

Determination of Reactivities by Molecular Orbital Theory (I) Theoretical Treatment on the Photochemical Reaction of Benzene and Maleic Anhydride (분자 궤도론에 의한 반응성 계산 (I) Benzene과 Maleic Anhydride 간의 광화학 반응)

  • Myung-Hwan Whangbo;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.273-280
    • /
    • 1969
  • The MO's of maleic anhydride are calculated using the parameter values, $h_{o}$.= 1, $h_{o}$:= 2, $k_{c=o}$= 1, $k_{c-o}$= 0.8, and ${\delta}_{{\alpha}_n}=2{\times}(0.3)^n$. With these MO's the interaction energies of the photochemical reaction of maleic anhydride (MA) with benzene are calculated using intermolecular orbital theory. It is shown that there are cases where the interaction energy includes a constant term and this term takes a great role in the photochemical interaction energy, and that with the calculated interaction energies the reaction mechanism is quite well explained. And it is proved that the photochemical reaction is possible for the second addition step of MA to benzene, and that the MA-benzene adduct should have the well-known stereochemical structure.

  • PDF