Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.5.1643

A Highly Efficient and Selective Nickel/Clay Catalyst for Liquid Phase Hydrogenation of Maleic Anhydride to Succinic Anhydride  

Tian, Weiping (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology)
Guo, Shaofei (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology)
Shi, Li (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology)
Publication Information
Abstract
Three Ni-based catalysts with different clay as support were prepared and tested in the hydrogenation of maleic anhydride, among which Ni/clay1 showed best activity and selectivity. Over Ni/clay1 catalyst prepared by impregnation method, 97.14% conversion of maleic anhydride and 99.55% selectivity to succinic anhydride were obtained at $180^{\circ}C$ under a pressure of 1 MPa. Catalytic activity was greatly influenced by the temperature and weighted hourly space velocity. Catalyst deactivation studies showed that this catalyst have a long life time, the yield of MA still higher than 90% even after a reaction time of 60 h. X-ray diffraction (XRD) and $H_2$ temperature programmed reduction (TPR) were use to investigate the properties of the catalyst. XRD and TPR studies showed that Ni was present as $Ni^{2+}$ on the support, which indicated that there was no elemental nickel ($Ni^0$) and $Ni_2O_3$ in the unreduced samples. The formation of Ni was strong impact on catalytic activity.
Keywords
Maleic anhydride; Ni; Clay; Hydrogenation; Succinic anhydride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Minoda, S.; Miyajima, M. Hydroc. Process 1970, 49, 176.
2 Harris, N.; Tuck, M. W. Hydroc. Process 1990, 69, 79.
3 Brownstein, A. M. Chem. Tech. 1991, 21, 506.
4 Castiglioni, G. L.; Gazzano, M.; Stefani, G.; Vaccari, A. Heterogen. Catal. Fine. Chem. 1993, 78, 275.
5 Seong, M. J.; Eric, G.; Sang, Y. J.; Kwang, C. P.; Jung, U. C. Catal. Today 2003, 87, 171.   DOI
6 Meyer, C. I.; Marchi, A. J.; Monzon, A.; Garetto, T. F. Appl. Catal. A 2009, 367, 122.   DOI
7 Zhang, D. Z.; Yin, H. B.; Xue, J. J.; Ge, C.; Jiang, T. S.; Yu, L. B.; Shen, Y. T. Ind. Eng. Chem. Res. 2009, 48, 11220.   DOI   ScienceOn
8 Zhang, D. Z.; Yin, H. B.; Xue, J. J.; Ge, C.; Jiang, T. S.; Yu, L. B.; Shen, Y. T. J. Ind. Eng. Chem. 2009, 15, 537.   DOI   ScienceOn
9 Liu, P.; Liu, Y.; Yin, Y. Q. J. Mol. Catal. A: Chem. 1999, 138, 129.   DOI
10 Thomas, W. D.; Taylor, P. D.; Tomfohrde, H. F. U.S. Patent 1992, 5149836.
11 Thakur, D. S.; Roberts, B. R.; Sullivan, T. J.; Vichek, A. L. U.S. Patent 1992, 5155086.
12 Wegman, R. W.; Bryant, D. R. U.S. Patent 1993, 5191091.
13 Bjornson, G.; Sturk, J. U.S. Patent 1992, 5086030.
14 Hara, Y.; Kusaka, H.; Inagaki, H.; Takahashi, K.; Wada, K. J. Catal. 2000, 194, 188.   DOI   ScienceOn
15 Li, J.; Tian, W. P.; Shi, L. Catal. Lett. 2011, 141, 565.   DOI   ScienceOn
16 Kirumakki, S. R.; Shpeizer, B. G.; Sagar, G. V.; Chary, K. V. R.; Clearfield, A. J. Catal. 2006, 242, 319.   DOI   ScienceOn
17 Messori, M.; Vaccari, A. J. Catal. 1994, 150, 177.   DOI   ScienceOn