• Title/Summary/Keyword: major fatty acid

Search Result 1,147, Processing Time 0.027 seconds

The Effect of Metal Compounds on Phospholipid Biosynthesis and Fatty Acid Composition in Escherichia coli and Bacillus subtilis (Escherichia coli와 Bacillus subtilis의 당지질 생합성과 지방산 조성에 미치는 여러가지 금속화합물의 영향)

  • 이소은;이종삼
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.54-67
    • /
    • 1995
  • The biosynthesis of galactolipid and galactose and their composition of fatty acid in E. coli and B. subtilis treated ] with copper chloride (10 ppm), nickel chloride (50 ppm), manganese chloride (100 ppm) during the culture were analyzed. The contents of MGDG, DGDG and total lipids in treatment with metal compounds were lower to compared with the control. In E. coli, the major fatty acid unitized for biosyntheis of MGDG were palimitic acid (ave. 36.87%) and linolenic acid (ave. 14.79%) in control. In MGDG, the major fatty acids were utilized for palmitic acid (ave. 20.00%) and myristic acid (ave. 7.32%) in treatment with copper chloride, lauric acid (ave. 11.71%) and linolenic acid (ave. 11.06%) in manganese chloride treatment. And in nickel chloride treatment, it was palmitic acid (ave. 36.16%) and oleic acid (ave. 6.43%) were use in MGDG formation. In DGDG, in copper chloride treatment, it was lauric acid (ave. 19.41%) and oleic acid (ave. 9.95%) in biosynthesis of galactolipid. and in treatment with nickel chloride linolenic acid (ave. 15.39%) and linoleic acid (ave. 13.51%), in manganese chloride treatment palmitic acid (ave. 29.76%) and palmitoleic acid (ave. 11.35%) were used in DGDG formation. In B. subtilis, the major fatty acids utilized for biosynthesis of galactolipid was palmitic acid (ave. 30.86%) and linolenic acid (ave. 8.36%) in control. Otherwise, in MGDG, the major fatty acids were utilized for palmitic acid (ave. 28.92%) and stearic acid (ave. 13.25%) in treatment with copper chloride, and palmitic acid (ave. 15.73%) and lauric acid (ave. 11.88%) in manganese chloride treatment. It was continned that nickel chloride treatment was palmitic acid (ave. 35.16%) and palmitoleic acid (ave. 12.47%). The major fatty acids in DGDG were utilized for palmitic acid(ave. 34.19%) and linoleic acid (ave. 17.45%) in copper chloride treatment, and lauric acid (ave. 11.16%) and myrisitic acid (ave. 8.65%) in manganese chloride treatment. In treatment with nickel chloride, it was palmitoleic acid (ave. 10.30%) and myristic acid (ave. 7.81%) were used galactolipid formation.

  • PDF

Studies on the Fatty Acid Composition of Egg Yolk Oil. (난황유의 지방산 조성에 관한 연구)

  • 고무석;김종숙;최옥자;김용두
    • Korean journal of food and cookery science
    • /
    • v.13 no.2
    • /
    • pp.87-91
    • /
    • 1997
  • Egg yolk oil was obtained by roasting and Pressing egg yolks of hen's egg breeding on the open bin system and the cage system, respectively. Lipids in egg yolk oil were extracted with a mixture of chloroform and methanol (2 : 1, V/V), and fractionated into neutral lipid, glycolipid, and phospholipid by silicic aicd column chromatography. Fatty acid composition of each fraction was determined by gas chromatography. The major fatty acids of total lipids and neutral lipids are in sequence of oleic acid, palmitic acid, and linoleic acid. The major fatty acids of the glycolipids are palmitic acid, oleic acid, stearic acid, and lauric acid successively. The major fatty acids of phospholipids are oleic acid, lauric acid, and Palmitic acid consecutively. About the fatty acids composition of egg yolk oil in the open barn system, the contents of saturated fatty acid are lower and the contents of unsaturated fatty acid are higher than that of the case system. The contents of unsaturated fatty acid in egg yolk oil is higher than that of saturated fatty acid in total lipids and nutral lipids. Unsaturated fatty acid/saturated fatty acid of e99 yolk oil in the open barn system is higher than that of the cage system in glycolipids and phospholipids.

  • PDF

The Effect of Metal Compounds em Biosynthesis of Phospholipid and the Fatty Acid Composition in Escherichia coli and Bacillus subtilis (Escherichia coli와 Bacillus subtilis의 인지질 생합성과 지방산 조성에 미치는 금속 화합물의 영향)

  • Park, Hye-Kyeong;Lee, Chong-Sam;Seo, Kwang-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.1
    • /
    • pp.43-70
    • /
    • 1994
  • The effects of potassium chromate (500ppm/500ppm), potassium dichromate (500ppm/500ppm), cobalt chloride (100ppm/10ppm), methylmercuric chloride (100ppm/10ppm) on the biosynthesis of phospholipid and their composition of fatty acids in E.coli and B.subtilis were analyzed. The contents of phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, cardiolipin and total lipids in treatment with metal compounds were lower to compare with the control. The major fatty acid utilized for biosynthesis of phospholipid was palmitic acid in control of E.coli and B.subtilis. However, in treatment with metal compounds, changes of fatty acid composition utilized for phospholipid formation were as follows. In E.coli major fatty acids were palimitic acid (ave. 26.26%) and cis-vaccenic acid (ave. 10.94%) in treatment with potassium chromate, palmitic acid (ave. 31.41%/31.42%) and stearic acid (ave. 17.92%/19.41%) in treatment with potassium dichromate and cobalt chloride. And in treatment with raethylmercuric chloride, palmitic acid (ave. 26.66%), stearic acid (ave. 15.50%) and cis-vaccenic acid (ave. 20.59%) were used in phospholipid formation. In B.subtilis, the major fatty acid was palmitoleic acid (ave. 15.29% /10.22%) in treatment with potassium chromate and cobalt chloride, and stearic acid (ave. 16.01%) in treatment with potassium dichromate. On the other hand, cis-vaccenic acid (ave. 9.09%), palmitic acid (ave. 17.23%), stearic acid (ave. 6.66%), myristic acid (ave. 6.34%) and lauric acid (ave. 4.75%) were analyzed into major fatty acids in treatment with methylmercuric chloride. As shown in results, specific fatty acid pattern was came out in treatment with metal compounds according to bacteria and treatments.

  • PDF

Taxonomical Study by the Major Fatty Acid of Genus Rhus(anacardiaceae) in Korean (주요 지방산에 의한 한국산 옻나무屬의 분류학적 연구)

  • 정재민
    • Korean Journal of Plant Resources
    • /
    • v.11 no.2
    • /
    • pp.202-209
    • /
    • 1998
  • Through total fatty acid analysis by the Gas chromatography, 17 different fatty acids were identified from the sap extracted from bark of Korean Rhus(Anacardiaceae), six species. Linoleic acid(C18 :2) and oleic acid(C18 : 1) were identified as major fatty acids for the species investigated, but except in R. chinensis.In the fatty acid composition for the species, one or two specific-fatty acid was detected, and its could be utilized as a useful taxonomic character.The result of cluster analysis by the 22 reliable characters in the fatty acid composition suggested first group was R.trichocarpa and R. succedanea, the second group, R.verniciflua, R.ambgua and R. sylvestris, but R.chinensis was a greatly independent species. The possible chemotaxonomic application of the fatty acid composition of bark in the genus Rhus was discussed.

  • PDF

Fatty Acid Composition of Total Lipids from Needles and Pollen of Korean Pinus densiflora and Pinus koraiensis (소나무 및 잣나무의 잎과 꽃가루의 지방산 조성)

  • Yoon, Tai-Heon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.25-30
    • /
    • 1992
  • The needles and pollen of Pinus densiflora and Pinus koraiensis were studied for their lipid contents and fatty acid composition. The total lipid contents in needles of Pinus densiflora and Pinus koraiensis were 5.0 and 4.5%, whereas in pollen of Pinus densiflora and Pinus koraiensis 3.5 and 5.6%, respectively. Twenty-four fatty acids ranged from lauric acid to docosahexaenoic acid(22:6${\omega}$3) were identified in the needle lipids. In needles, linolenic acid and palmitic acid were the major fatty acids. The needles of Pinus densiflora showed higher proportions of docosahexaenoic acid and 5-olefinic nonmethylene-interrupted polyenoic acids than those in the Pinus koraiensis. Twenty fatty acids ranged from myristic acid to lignoceric acid were identified in the pollen lipids. Linoleic acid was the major fatty acid in the pollen followed by oleic and palmitic acid. The fatty acid profile of pollen of Pinus densiflora was similar to those of the Pinus koraiensis pollen lipids.

Seasonal variation in fatty acid composition in various parts of broccoli cultivars

  • Bhandari, Shiva Ram;Park, Mi Young;Chae, Won Byoung;Kim, Dae-Young;Kwak, Jung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.289-296
    • /
    • 2013
  • To evaluate seasonal variation in fatty acid composition in broccoli, 12 commercial cultivars of broccoli were grown in spring and fall season at the field of NIHHS, and their floret, leaf and stem parts were used for the fatty acid composition analyses. Among 14 fatty acids detected in broccoli, linolenic, palmitic and linoleic acids were major fatty acids comprising more than 80% of total fatty acids in both the seasons and all the parts. Likewise, stearic and oleic acids were also present in considerable amount while remaining fatty acids; caproic, lauric, myristic, pentadecanoic, palmitoleic, heptadecanoic, arachidic, behenic and lignoceric acids showed their minor compositional ratio. Among the three parts, stem exhibited highest SFAs (49.681% in spring and 50.717% in fall season) compared to MUFA and PUFA, while highest compositional ratio of PUFAs were observed in leaves (62.588% in spring and 68.931% in fall season), which indicates leaves as a good source of health beneficial fatty acids. In contrast, floret part exhibited highest SFA (48.786%) and PUFA (57.518%) in spring and fall seasons, respectively. Major fatty acids; palmitic, linoleic and linolenic acid showed lowest cultivar dependent variation (below 10%) and leaf showed least variation in both the seasons compared to floret and stem. Our results suggest that all the fatty acids are significantly influenced by genotype of cultivars (C), plant parts (P) and growing seasons (S). Among the 14 fatty acids, myristic and palmitic acid showed highest positive or negative correlationship with oleic (r=$0.912^{**}$) and linolenic acid (r=-$0.933^{**}$), respectively. The most abundant fatty acid, linolenic acid, showed either negative or no correlation ship with other fatty acids while palmitic acid, a second major fatty acid, exhibited either positive or negative correlation ship.

Effect of Supplement of Korean Pinenut Oil on Plasma Total Fatty Acid Composition in Cholesterol-fed Rabbits (한국산 잣기름이 콜레스테롤 첨가식이로 사육한 토끼의 혈장 총지방산 조정에 미치는 영향)

  • Yoon, Tai-Heon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.17-26
    • /
    • 1994
  • The present study was carried out in atheroscleorotic New Zealend white(NZW) rabbits. to evaluate the effect of dietary supplementation with Korean pinenut oil, on plasma total fatty acid composition. In study I, NZW rabbits were fed 10 weeks on a commercial chow diet supplemented with 5% of energy as fats(soybean oil or pinenut oil) or 10% of energy as fats(soybean oil or pinenut oil) with the addition of 1% cholesterol to the diet. Nineteen fatty acids ranged from myristic acid (14:0) to cervonic acid (22:6 ${\omega}3$) were identified in all the samples. The c5, c9, $c12{\sim}18$ : 3 acid was not reported in the fatty acid methyl ester profiles of each group because it was included in the linoleic acid peak. The major constitutent fatty acids in the chow diet group were linoleic acid, oleic acid, palmitic acid and ${\alpha}$-linolenic acid. In the cholesterol group, oleic acid, linoleic acid and palmitic acid were the major fatty acids. In plasma of cholesterol-fed animals, the levels of 16:1 ${\omega}$ 7 and 18:1 1 ${\omega}$ 9 were increased. Linoleic acid was the major fatty acid in soybean oil/cholesterol and pinenut oil/cholesterol groups. Plasma linoleic acid levels were significantly incresed from 4 to 6% by the supplementation of 5% soybean or 5% pinenut oil in the cholesterol diet for 5 weeks, compared to cholesterol group. Plasma 16 : 1 ${\omega}$ 7 levels in animals fed with 5 or 10% pinenut oils were significantly lower than in those fed cholesterol for 5 weeks. After 10 weeks on the soybean oil and pinenut oil diet there were no significant differences in the fatty acid composition. In study II, the fatty acid composition was not affected by the types or levels of oils supplemented for 5 weeks. After 10 weeks on the oil diets 16:1 ${\omega}$ 7 and 18:1 ${\omega}$ 9 were decreased in 10% soybean in oil/cholesterol and 10% pinenut oil/cholesterol groups, compared to cholesterol group.

Fatty Acid and Free Amino Acid Composition of Major Domestic Soybean Cultivars (국내산 백태 품종의 지방산 및 유리아미노산 조성)

  • Kyung-Haeng Lee
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.2
    • /
    • pp.123-127
    • /
    • 2024
  • The fatty acid composition and free amino acid content of domestic soybean cultivars were analyzed to confirm the quality characteristics of protein and fat contained in soybeans. The saturated fatty acid content of soybeans included palmitic acid at 9.47~11.15%, followed by stearic acid and myristic acid. The total saturated fatty acid content in soybeans was 12.56~14.34%, with Taekwang having the lowest content, followed by Daewon, Seonyu, Cheonga, and Jinpung. The linoleic acid content, an unsaturated fatty acid, was 45.69~58.17%, with Taekwang showing the lowest composition and Jinpung showing the highest composition. Next was oleic acid at 14.69~33.86%. Jinpung had the highest linoleic acid composition, had the lowest and Taekwang which had the least linoleic acid, had the highest. The unsaturated fatty acid content was in the order of linolenic acid, eicosatrienoic acid, eicosadienoic acid, and eicosapentaenoic acid. The total free amino acid content was 217.28~456.66 mg%, with Daewon showing the highest free amino acid content, followed by Seonyu, Taekwang, Cheonga, and Jinpung. The free amino acid content varied depending on the cultivars, but in general, the free amino acids in the soybeans used in the experiment showed higher aspartic acid, glutamic acid, and proline contents than other amino acids.

The Effects of Carbon Sources on the Biosynthesis of the Phospholipid and the Fatty Acid Composition of Mitochondria in Chlorella ellipsoidea

  • Yoon, Seung-Hee;Jang, Jae-Seon;Lee, Chong-Sam
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.343-352
    • /
    • 1996
  • The biosynthesis of phospholipid and the composition of fatty acid were analyzed in mitochondria isolated from Chlorella ellipsoidea treated with carbon sources (glucose, sucrose, raffinose) during the culture. The growth of Chlorella and total lipid contents in mitochondria treated with various carbon sources was increased to compare with the control. When Chlorella mitochondria was treated with various carbon sources, four kinds of phospholipid were increased predominantly. The major fatty acids utilized for the biosynthesis of the phospholipid were analyzed linoleic acid (average 25.18%) and stearic acid (average 10.52%) in the control. But, it was shown that the major fatty acids in Chlorella mitochondria treated with glucose were stearic acid (average 30.93%), palmitic acid (average 17.47%) and stearic acid (average 20.31%), linoleic acid (average 16.68%) in sucrose treatment and oleic acid (average 17.17%), palmitic acid (average 15.64%) in raffinose treatment.

  • PDF

Changes of the Physico-chemical Characteristics of Venison Extracts during Chilling Storage (냉장중 사슴육 증탕액의 이화학적 특성의 변화)

  • 박창일;김영직
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.10 no.4
    • /
    • pp.298-304
    • /
    • 2000
  • This experiment was carried out to investigate the changes in pH, proximate composition, pH, VBN, TBA, minerals, and fatty acid of venison extracts, from three slaughtered deers with 180~210 kg live weight (♀, Elk deer, 28~30 months of age) at 4$^{\circ}C$. Proximate composition was not affected by storage periods. The pH, VBN, and TBA ranged from 4.60~4.62, 13.52~15.75 mg%, and 0.20~0/81mg/kg. respectively. The pH, VBN, and TBA gradually increased during storage period (p<0.050. Among minerals, K, P, Na, Mg, and Ca were major mineral contents and the Ca, mg, Na contents significantly decreased (p<0.05) according to the storage period. The major fatty acid found in venison extracts were oleic acid, palmitic acid, stearic acid, linoleic acid. Oleic acid, linolenic acid, and arachidonic acid decreased during storage, but palmitic acid, heptadeanonic acid, and stearic acid increased during the storage. U/S (unsalturated fatty acid/saturated fatty acid) ratio tended to decrease during the storage.

  • PDF