• Title/Summary/Keyword: major cultivation area

Search Result 185, Processing Time 0.034 seconds

Improvement in Rice Cultural Techniques Against Unfavorable Weather Condition (기상재해와 수도재배상의 대책)

  • Ryu, I.S.;Lee, J.H.;Kwon, Y.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.385-397
    • /
    • 1982
  • The climatic impacts have been the environmental constraints with soil characteristics to achieve self sufficiency of food production in Korea. In this paper, the distribution and appearance of impacts and the changes in climatological status due to recent trend of early transplanting of rice are widely discussed to derive some countermeasures against the impacts, being focussed on cultural A long term analysis of the climatic impact appearances of the last 74 years showed that drought, strong wind, flood, cold spell and frost were the major impacts. Before 1970's, the drought damage was the greatest among the climatic impacts; however, the expansion and improvement of irrigation and drainage system markedly decreased the damage of drought and heavy rain. The appearance of cold damage became more frequent than before due to introduction of early transplanting for more thermophilic new varieties. Tongillines which were from Indica and Japonica crosses throw more attention to cold damage for high yields to secure high temperature in heading and ripening stages and lead weakness to cold and drought damage in early growth stage after transplanting. The plants became subject to heavy rain in ripening stage also. For the countermeasures against cold damage, the rational distribution of adequate varieties according to the regional climatic conditions and planting schedule should be imposed on the cultivation. A detoured water way to increase water temperature might be suggestable in the early growth stage. Heavy application of phosphate to boost rooting and tillering also would be a nutritional control method. In the heading and ripening stages, foliar application of phosphate and additional fertilization of silicate might be considerable way of nutritional control. Since the amount of solar radiation and air temperature in dry years were high, healthy plants for high yield could be obtained; therefere, the expansion of irrigation system and development of subsurface water should be performed as one of the national development projects. To minimize the damage of strong wind and rainfall, the rational distribution of varieties with different growing periods in the area where the damage occurred habitualy should be considered with installation of wind breaks. Not only vertical windbreaks but also a horizontal wind break using a net might be a possible way to decrease the white heads in rice field by dry wind. Finally, to establish the integrated countermeasures against the climatic impacts, the detailed interpretation on the regional climatic conditions should be conducted to understand distribution and frequency of the impacts. The expansion of observation net work for agricultural meteorology and development of analysis techniques for meteorological data must be conducted in future together with the development of the new cultural techniques.

  • PDF

Transfer of Arsenic from Soilsto Rice Grains through Reducing the Thickness of Soil Covering in Soil Reclamation in an Abandoned Coal Mine Area (폐석탄광산 농경지(논) 토양개량복원 시 복토두께 조정에 따른 비소의 벼 전이효과 현장실증)

  • Il-Ha Koh;Yo Seb Kwon;Ju In Ko;Won Hyun Ji
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.3
    • /
    • pp.157-165
    • /
    • 2023
  • In Korea, a major contaminant of farmland soils in the vicinity of abandoned mines is arsenic, for which the general soil reclamation method is contaminated soil stabilization and cover the stabilized soil with clean soil at a thickness of 40 cm. In a previous pot experiment study we confirmed the feasibility of a lower thickness (20 cm) of covering soil for such reclamation in abandoned coal mines, where arsenic contamination levels are generally lower than in metal mines. In this subsequent study a field experiment including rice plant cultivation in field test plots was conducted. For over 4 months, the transfer of arsenic from the contaminated soil to the unpolished rice grains was reduced by 44% when a clean soil covering with a thickness of 20 cm was applied. The maximum decrease (56%) was shown when the stabilization process was performed before the covering. These results reveal a lower thickness of clean soil covering has a high feasibility and it can increase cost-efficiency in the reclamation of an abandoned coal mine.

Natural variation of functional components between Korean maize types (국내 옥수수 품종에 따른 기능성 성분의 자연 변이 분석)

  • Jung-Won Jung;Myeong-Ji Kim;Imran Muhammad;Eun-Ha Kim;Soo-Yun Park;Tae-Young Oh;Young-Sam Go;Moon-Jong Kim;Sang-Gu Lee;Seonwoo Oh;Hyoun-Min Park
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.484-491
    • /
    • 2023
  • Maize is one of the major crops consumed in worldwide, which nutrients accounts for a large amount of starch, but also functional components, and phenolic acid is known to have a high content. Maize is divided into waxy maize, sweet maize, and normal maize with its shape and use, therefore there is also a difference in nutritional composition. This study was conducted to analyze the content of functional components according to the type of maize and to produce natural variation data in consideration of environmental factors. 3 shapes of maize (waxy maize, sweet maize, and normal maize) samples cultivated in 3 regions (Suwon, Daegu, and Hongcheon) were analyzed using HPLC and GC-TOF-MS. Comparing with type through ANOVA, multivariate statistical analysis, Pearson correlation analysis, 28 components, including carotenoids and tocopherols, showed significant differences among a total of 32 components (p <0.05), 15 of them showed very significant differences (p <0.001). When comparing with regions, 15 components showed significant differences and only vanillate, syringate, C23-ol of them showed most significant differences (p <0.001). As a result of principal component analysis, cluster classification was distinguished by shape than by region, with α-carotene, cholesterol for waxy maize, vanillate and stigmasterol for sweet maize, lutein and β-carotene for normal maize had a great effect on cluster formation. It suggests that the content of functional components is more affected by genetic factors than environmental factors.

Estimation and Mapping of Methane Emissions from Rice Paddies in Korea: Analysis of Regional Differences and Characteristics (전국 논에서 발생하는 메탄 배출량의 산정 및 지도화: 지역 격차 및 특성 분석)

  • Choi, Sung-Won;Kim, Joon;Kang, Minseok;Lee, Seung Hoon;Kang, Namgoo;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.88-100
    • /
    • 2018
  • Methane emissions from rice paddies are the largest source of greenhouse gases in the agricultural sector, but there are significant regional differences depending on the surrounding conditions and cultivation practices. To visualize these differences and to analyze their causes and characteristics, the methane emissions from each administrative district in South Korea were calculated according to the IPCC guidelines using the data from the 2010 Agriculture, Forestry and Fisheries Census, and then the results were mapped by using the ArcGIS. The nationwide average of methane emissions per unit area was $380{\pm}74kg\;CH_4\;ha^{-1}\;yr^{-1}$. The western region showed a trend toward higher values than the eastern region. One of the major causes resulting in such regional differences was the $SF_o$ (scaling factor associated with the application of organic matter), where the number of cultivation days played an important role to either offset or deepen the differences. Comparison of our results against the actual methane emissions data observed by eddy covariance flux measurement in the three KoFlux rice paddy sites in Gimje, Haenam and Cheorwon showed some differences but encouraging results with a difference of 10 % or less depending on the sites and years. Using the updated GWP (global warming potential) value of 28, the national total methane emission in 2010 was estimated to be $8,742,000tons\;CO_2eq$ - 13% lower than that of the National Greenhouse Gas Inventory Report (i.e., $10,048,000tons\;CO_2eq$). The administrative districts-based map of methane emissions developed in this study can help identify the regional differences, and the analysis of their key controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

Agroclimatic Zone and Characters of the Area Subject to Climatic Disaster in Korea (농업 기후 지대 구분과 기상 재해 특성)

  • 최돈향;윤성호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.13-33
    • /
    • 1989
  • Agroclimate should be analyzed and evaluated accurately to make better use of available chimatic resources for the establishment of optimum cropping systems. Introducing of appropriate cultivars and their cultivation techniques into classified agroclimatic zone could contribute to the stability and costs of crop production. To classify the agroclimatic zones, such climatic factors as temperature, precipitation, sunshine, humidity and wind were considered as major influencing factors on the crop growth and yield. For the classification of rice agroclimatic zones, precipitation and drought index during transplanting time, the first occurrence of effective growth temperature (above 15$^{\circ}C$) and its duration, the probability of low temperature occurrence, variation in temperature and sunshine hours, and climatic productivity index were used in the analysis. The agroclimatic zones for rice crop were classified into 19 zones as follows; (1) Taebaek Alpine Zone, (2) Taebaek Semi-Alpine Zone, (3) Sobaek Mountainous Zone, (4) Noryeong Sobaek Mountainous Zone, (5) Yeongnam Inland Mountainous Zone, (6) Northern Central Inland Zone, (7) Central Inland Zone, (8) Western Soebaek Inland Zone, (9) Noryeong Eastern and Western Inland Zone, (10) Honam Inland Zone, (ll) Yeongnam Basin Zone, (12) Yeongnam Inland Zone, (13) Western Central Plain Zone, (14) Southern Charyeong Plain Zone, (15) South Western Coastal Zone, (16) Southern Coastal Zone, (17) Northern Eastern Coastal Zone, (18) Central Eastern Coastal Zone, and (19) South Eastern Coastal Zone. The classification of agroclimatic zones for cropping systems was based on the rice agroclimatic zones considering zonal climatic factors for both summer and winter crops and traditional cropping systems. The agroclimatic zones were identified for cropping systems as follows: (I) Alpine Zone, (II) Mountainous Zone, (III) Central Northern Inland Zone, (IV) Central Northern West Coastal Zone, (V) Cental Southern West Coastal Zone, (VI) Gyeongbuk Inland Zone, (VII) Southern Inland Zone, (VIII) Southern Coastal Zone, and (IX) Eastern Coastal Zone. The agroclimatic zonal characteristics of climatic disasters under rice cultivation were identified: as frequent drought zones of (11) Yeongnam Basin Zone, (17) North Eastern Coastal Zone with the frequency of low temperature occurrence below 13$^{\circ}C$ at root setting stage above 9.1%, and (2) Taebaek Semi-Alpine Zone with cold injury during reproductive stages, as the thphoon and intensive precipitation zones of (10) Hanam Inland Zone, (15) Southern West Coastal Zone, (16) Southern Coastal Zone with more than 4 times of damage in a year and with typhoon path and heavy precipitation intensity concerned. Especially the three east coastal zones, (17), (18), and (19), were subjected to wind and flood damages 2 to 3 times a year as well as subjected to drought and cold temperature injury.

  • PDF

The Monitoring of Agricultural Environment in Daegwallyeong Area (대관령 지역의 농업환경 모니터링)

  • Park, Kyeong-Hun;Yun, Hye-Jeong;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Lee, Jeong-Ju;Hwang, Hyun-Ah;Kim, Ki-Deog;Jin, Yong-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1027-1034
    • /
    • 2011
  • In order to provide the basic information on the agricultural environment in Daegwallyeong Highland, the characters of weather, water, and soil quality were investigated. The meteorological characteristics was monitored by automatic weather system (AWS) at 17 sites. The quality of water for samples were collected monthly at 24 sites depending on landuse style. Soil samples were collected from a forest, grassland, and the major vegetable cultivation areas such as potato, carrot, Chinese cabbage, onion, head lettuce, and welsh onion field. The weather showed the mountain climate, and the average yearly temperature is $6.4^{\circ}C$, the average temperature in January is $-7.6^{\circ}C$ and the average temperature in July is $19.1^{\circ}C$, and the change of temperature on the districts of Daegwallyeong is severe. The yearly record of precipitation shows 1717.2 mm. The water quality of crop field was worse than forest or grassland in Daewallyeong highland. In 2005, annual T-N, T-P, SS distribution of Chinese cabbage field showed 7.4~11.3, 0.061~0.1, and $3.0{\sim}53.0mg\;L^{-1}$. The potato field showed 3.1~7.2, 0.019~0.056 and $0.5{\sim}3.0mg\;L^{-1}$, respectively. Being compared of water quality between potato field and chinese cabbage field, it showed that the water quality of Chinese cabbage field was worse than potato field. On farming, the soil of crop cultivation showed pH 5.6 to 6.8, $18.0{\sim}42.4g\;kg^{-1}$ of OM, $316{\sim}658mg\;kg^{-1}$ of Avail. $P_2O_5$. The content of cations showed $0.41{\sim}0.88cmol_c\;kg^{-1}$ of Exch. K, $3.73{\sim}7.07cmol_c\;kg^{-1}$ of Exch. Ca and $1.17{\sim}1.90cmol_c\;kg^{-1}$ of Exch. Mg.

Spread of Cyst Nematodes in Highland Chinese Cabbage Field in Gangwon-do (강원도 고랭지배추 재배지에서 씨스트선충의 분포 확산)

  • Kwon, Soon-Bae;Park, Dong-Kwon;Won, Heon-Seop;Moon, Youn-Gi;Lee, Jae-Hong;Kim, Yong-Bog;Choi, Byoung-Gon;Seo, Hyun-Taek;Ko, Hyoung-Rai;Lee, Jae-Kook;Lee, Dong Woon
    • Korean journal of applied entomology
    • /
    • v.57 no.4
    • /
    • pp.339-345
    • /
    • 2018
  • The sugar beet cyst nematode (SBCN), Heterodera schachtii first detected in Taebaek, Gangwon-do in 2011, is one of the major plant parasitic nematodes that cause economic damage to the Chinese cabbage in highland regions. In addition, the distribution of clover cyst nematode (CCN), H. trifolii was confirmed in the highland Chinese cabbage cultivated regions in 2017. In order to investigate the spread of cyst nematodes, this study has been conducted since 2013 in the highland Chinese cabbage cultivation area. In addition, in 2017, the Real-Time PCR technique with the species-specific primer was used to investigate those two cyst nematodes and the soybean cyst nematode (SCN), H. glycines which is known for its distribution in Korea, focusing on the main production regions of highland Chinese cabbage cultivation. The number of infected fields in the Chinese cabbage plantation in highland increased every year to confirm distribution in Taebaek, Samcheok, Jeongseon and Gangneung in 2017, and the cumulative number of infection fields reached 245 by 2017. Of the 41 possible cyst nematode samples for PCR analysis, 61% were CCN, only 9.8% of the SBCN and 29.3% of the SCN were identified. Therefore, some of the previously known SBCN or CCN discoveries are likely to have been infected with SCN. It is believed that the CCN needs to be controlled in the future as CCN have been found to be dominant species in the highland Chinese cabbage plantation regions.

Studies on the Epidemiology and Control of Bacterial Leaf Blight of Rice in Korea (한국에 있어서의 벼흰빛잎마름병의 발생생태와 방제에 관한 연구)

  • Lee Kyung-hee
    • Korean journal of applied entomology
    • /
    • v.14 no.3 s.24
    • /
    • pp.111-131
    • /
    • 1975
  • The study has been carried out to investigate the occurrence, damage, characteristics of the pathogen, environmental conditions affecting the disease outbreak, varietal resistance, forecasting, and chemical control of bacterial leaf blight of rice in Korea since 1964. Bacterial leaf blight of rice became a major disease in Korea since 1960. A correlation was found between the annual increase of epidemics and increase of cultivation area of susceptible varieties, Jinheung, Keumnampung etc. Areal damage within the country showed that the more was at southern province, Jeonnam, Gyeongnam and western coast, and at flooded rice paddy. Yield reduction directly related with the amount of infection on upper leaves at heading stage. Fifty per cent of reduction resulted when the lesion area was more than 60 per cent. Less than 20 per cent of lesion area, however, was not affected so much on yield loss One hundred and six isolates collected from all over the country were classified as 8 strains by using 4 different bacteriophages in 1973. It was, however, only two in 1965. There were some specificities on varietal distributions among the strains such as that the Jinheung attacked mainly by strain A, B, C and I, those attack Kimmaze were A, B, H and I. Most strains were found from Tongil except D and E, whereas Akibare was only variety that attacked by strain E. Low temperature, high humidity, heavy rainfall and insutficient daylight favored the disease epidemics. Especially, typhoon and flooding at heading stage were critical factors. The earlier transplanting the more disease was resulted, and more nitrogen fertilizer application accerelated the diseased development in general. The resistance to the disease varied by growing stage of the sane plants. All of recommended varieties in Korea were susceptible to the disease except Norm No. 6 and Sirogane which moderately resistant. The pathogen, Xanthomonas oryzae, was detectable from extract of healthy seedlings that were grown in the field with an heavy infection previous year. The more bacteriophage in irigation water resulted the more disease outbreak, and the existence of more than 50 bacteriophages in 1ml. of irrigation water were necessary to initiate the disease out break. The curves representing occurrence of bacteriophages and disease outbreak were similar with 15 days interval. The survey of bacteriophage occurrence can be utilized in forecasting of the disease two weeks ahead of disease outbreak. Three applications of chemicals, Phenazin and Sangkel, in weekly intervals at the early satage of out-break depressed the symptom development, and increased yield by 20per cent. Proper period for the chemical application was just before the number of bacteriophage reaches 50 in 1ml. of irrigation water.

  • PDF

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

Contents of Inorganic Nutrient in Leaf Perilla in Growing Stages under Plastic Film House Cultivation (시설재배 잎들깨의 생육시기에 따른 엽 중 무기성분 함량)

  • Lee, Ju-Young;Sung, Jwa-Kyung;Kang, Seong-Soo;Jang, Byoung-Choon;Lee, Su-Yeon;Kim, Rog-Young;Lee, Ye-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.215-222
    • /
    • 2012
  • This experiment was conducted to clear up the cause of nutrient physiological disorder and to manage of optimum fertilization for leaf perilla crop under plastic film house condition in Geum-san area in 2009. A nutrient contents of leaf perilla were analyzed during the growing stages of crop from the first harvest to the last harvest stages, and the data were going to use as the nutritional factors for farms' activity in the fields. In survey of leaf perilla growing status at five farmers' fields, it was needed 30 days for growing of 5~10 stems, 60 days for 10~15 stems and 45 days for 15~20 stems of leaf perilla. Contents of nitrogen, phosphorus and potassium in leaf and stem had been kept on some high values in early stages, but it had been decreased in gradually in late stages of growing. Nitrogen and potassium contents were more changeable in leaf than stem, and phosphorus content was kept in more both of leaf and stem than those of nitrogen and potassium. The major macro-nutrient contents of perilla leaf on first of July were 6.34 in N, 0.54 in P, 2.48 in K, 1.98 in Ca and 0.62% in Mg, total uptake amounts of major three elements were $400kg\;ha^{-1}$ in N, $30kg\;ha^{-1}$ in P and $250kg\;ha^{-1}$ in K. Total yield of perilla leaf was $52,000kg\;ha^{-1}$, and total dry matter was $10,510kg\;ha^{-1}$ with $8,680kg\;ha^{-1}$ in leaf dry matter and $1,830kg\;ha^{-1}$ in stem dry matter.