• Title/Summary/Keyword: main span of bridge

Search Result 219, Processing Time 0.026 seconds

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion

  • Homaei, F.;Shojaee, S.;Amiri, G. Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.183-202
    • /
    • 2014
  • A new method of multiple damage detection in beam like structures is introduced. The mode shapes of both healthy and damaged structures are used in damage detection process (DDP). Multiple Damage Localization Index Based on Mode Shapes (MDLIBMS) is presented as a criterion in detecting damaged elements. A finite element modeling of structures is used to calculate the mode shapes parameters. The main advantages of the proposed method are its simplicity, flexibility on the number of elements and so the accuracy of the damage(s) position(s), sensitivity to small damage extend, capability in prediction of required number of mode shapes and low sensitivity to noisy data. In fact, because of differential and comparative form of MDLIBMS, using noise polluted data doesn't have major effect on the results. This makes the proposed method a powerful one in damage detection according to measured mode shape data. Because of its flexibility, damage detection process in multi span bridge girders with non-prismatic sections can be done by this method. Numerical simulations used to demonstrate these advantages.

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

Estimation of Optimum Pile length Using Various Prediction (다양한 예측기법을 이용한 현장타설말뚝의 최적길이 산정)

  • Choi, Young-Seok;Iim, Hyung-Joon;Song, Myung-Jun;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.700-707
    • /
    • 2008
  • As plan connecting island to island or island to land is needed, a lot of long-span bridge is being designed lately in Southern part of Korea. With development of pile equipment, overhanging large-scaled concrete pile are adopted to foundation type of main tower or pylon. About the number of 15~30 group piles per tower foundation is designed to resist long-spaning super-structure load, but by restricted condition of site investigation cost, a few boring-hole tests are performed to identify sub-ground layers. Up to now, direct-curved method connecting two or three known boring logs and representative interval method are usually used to evaluate unknown depth and rock properties at locations where piles are constructed. Because this approach is not logical and so rough, much difference occurs between designed length of piles and real length of it. In this paper, using a lot of various prediction method(reciprocal distance method, inverse square distance method and kriging method etc.), we suggest optimum length of group piles.

  • PDF

Plastic load bearing capacity of multispan composite highway bridges with longitudinally stiffened webs

  • Unterweger, Harald;Lechner, Andreas;Greiner, Richard
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.1-19
    • /
    • 2011
  • The introduction of the Eurocodes makes plastic design criteria available also for composite bridges, leading to more economical solutions compared with previous elastic design rules. Particularly for refurbishment old bridges with higher actual traffic loads, up to date outside the scope of the Eurocodes, strengthening should therefore be avoidable or at least be necessary only to a minor extent. For bridges with smaller spans and compact cross sections, the plastic load bearing capacity is clearly justified. In this work, however, the focus is placed on long span continuous composite bridges with deep, longitudinally stiffened girders, susceptible to local buckling. In a first step, the elastic - plastic cross section capacity of the main girder in bending is studied as an isolated case, based on high preloads acting on the steel girder only, due to the common assembling procedure without scaffolding. In a second step, the effects on the whole structure are studied, because utilising the plastic section capacity at midspan leads to a redistribution of internal forces to the supports. Based on the comprehensive study of an old, actual strengthened composite bridge, some limitations for plastic design are identified. Moreover, fully plastic design will sometimes need additional global analysis. Practical recommendations are given for design purposes.

Recommended properties of elastic wearing surfaces on orthotrotropic steel decks

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.357-374
    • /
    • 2015
  • Orthotropic decks composed of deck plate, ribs, cross beams and wearing surface are frequently used in industry to span long distances due to their light structures and load carrying capacities. As a result they are broadly preferred in industry and there are a lot of bridges of this type exist in the world. Nevertheless, some of them cannot sustain the anticipated service life and damages in form of cracks develop in steel components and wearing surface. Main reason to these damages is seen as the repetitive wheel loads, namely the fatigue loading. Solutions to this problem could be divided into two categories: qualitative and quantitative. Qualitative solutions may be new design methodologies or innovative materials, whereas quantitative solution should be arranging dimensions of deck structure in order to resist wheel loads till the end of service life. Wearing surface on deck plate plays a very important role to avoid or mitigate these damages, since it disperses the load coming on deck structure and increases the bending stiffness of deck plate by forming a composite structure together with it. In this study the effect of Elastic moduli, Poisson ratio and thickness of wearing surface on the stresses emerged in steel deck and wearing surface itself is investigated using a FE-model developed to analyze orthotropic steel bridges.

Fatigue performance of a new type PSC girder (신형식 PSC거더의 피로 성능)

  • Choi, Sang-Hyun;Lee, Chang-Soo;Kim, Tae-Kyun;Eui, Chul-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.965-972
    • /
    • 2011
  • Unlike metallic materials, the importance of fatigue performance of concrete has been ignored. However, it is reported that environmental effects, if it cause deterioration, may increase the risk of fatigue failure under repeated loadings. In case of railroad bridges, the risk may increase due to highly periodic, repetitive, heavier nature of train load, which runs through the fixed passage called the track. Especially, when new material or structure is implemented for a main bridge member, experimental validation should be performed to avoid damage or failure due to unexpected behavior. In this paper, the fatigue performance of an IT girder is examined via a repeated loading test. The IT girder is a new type of a prestressed concrete (PSC) girder with two prestressed H-beams in the top of the girder, which provide additional sectional capacity, and it can be applied to the span longer than 30m which is a typical limit for a usual PSC girder. To obtain the fatigue performance, a 10m IT girder specimen is designed, and a repeated load test is performed by applying the cyclic load two million times. The fatigue performance of the girder is examined according to the Japanese and the CEB-FIB design codes. The fatigue test result shows that the IT girder satisfies both design codes.

  • PDF

Response of Skew Bridges with permutations of geometric parameters and bearings articulation

  • Fakhry, Mina F.;ElSayed, Mostafa M.;Mehanny, Sameh S.F.
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.477-487
    • /
    • 2019
  • Understanding the behavior of skew bridges under the action of earthquakes is quite challenging due to the combined transverse and longitudinal responses even under unidirectional hit. The main goal of this research is to assess the response of skew bridges when subjected to longitudinal and transversal earthquake loading. The effect of skew on the response considering two- and three- span bridges with skew angles varying from 0 to 60 degrees is illustrated. Various pier fixities (and hence stiffness) and cross-section shapes, as well as different abutment's bearing articulations, are also studied. Finite-element models are established for modal and seismic analyses. Around 900 models are analyzed under the action of the code design response spectrum. $Vis-{\grave{a}}-vis$ modal properties, the higher the skew angle, the less the fundamental period. In addition, it is found that bridges with skew angles less than 30 degrees can be treated as straight bridges for the purpose of calculating modal mass participation factors. Other monitored results are bearings' reactions at abutments, shear and torsion demand in piers, as well as deck longitudinal displacement. Unlike straight bridges, it has been typically noted that skew bridges experience non-negligible torsion and bi-directional pier base shears. In a complementary effort to assess the accuracy of the conducted response spectrum analysis, a series of time-history analyses are applied under seven actual earthquake records scaled to match the code design response spectrum and critical comparisons are performed.

Aerodynamic Characteristics of Long-Span Bridges under Actively Generated Turbulences (능동 난류 생성을 통한 장대 교량의 공력 특성 비교)

  • Lee, Seungho;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.341-349
    • /
    • 2011
  • The main purpose of this study is to investigate the affect of various turbulence properties on aerodynamic characteristics of twin box bridge section. To achieve this goal, active turbulence generator which successfully simulated various target turbulences was developed in the wind tunnel. From the wind tunnel tests, turbulence integral length scale did not affect on the aerodynamic forces and flutter derivatives except for the $A_1^*$ curve. Turbulence intensity gave slight effect on the unsteady aerodynamic force, but turbulence integral length scale did not affect the self-excited forces except vertical direction component.

3-D Aeroelastic Model Test of a Cable-Stayed Bridge with a Main Span of 1,200m (주경간장 1,200m 사장교의 3차원 풍동실험)

  • Sin, Seung-Hwan;Kim, Yeong-Min;Gwak, Yeong-Hak;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.70-70
    • /
    • 2011
  • 사장교의 적용지간이 증가하여 초장대화하면서 구조안전성을 확보하기 위한 다양한 노력이 시도되고 있다. 본 연구에서는 현재까지 시도된 적이 없는 주경간 1,200m 사장교의 내풍안정성을 검토하기위하여 3차원공탄성 모형을 제작하고 풍동실험을 수행하였다.(그림1 참조) 실험대상 구조물은 내풍안정성 증대를 위해 유선형 박스거더를 채용하고 케이블이 거더와 함께 비틀림에 저항하도록 2면 케이블을 적용하였다. 구조적인 측면에서는 보강형 자중감소를 위해 전경간을 강박스로 계획하였으며 측경간에 부반력제어를 위한 Counter Weight을 적용하였다. 실험대상 구조물은 완성계, 가설계95%, 가설계50%, 가설계45%로 모형을 해체하면서 진행하였고 가설단계 별로 내풍케이블의 수량과 형상을 달리하여 내풍안정성 개선효과를 확인하고자 하였다. 3차원 풍동실험 결과 완성계에서 교량의 안전성에 심각한 문제를 발생시킬 수 있는 와류진동, 플러터, 버페팅과 같은 유해한 진동현상이 발견되지 않았으며, 시공중 내풍안정성 확보를 위하여 대상교량에 내풍케이블을 설치하고 내풍케이블의 수량 및 배치형상에 따른 진동제어 효과를 검토하였다. 본 실험은 현재 풍동실험 요소기술을 이용하여 1,200m급 사장교 풍동실험을 수행하였고 이에 따라 교량이 초장대화 되면서 스케일다운에 따른 보강형질량, 케이블 간격 등 실험모형 제작상 문제점을 확인 할 수 있었으며 이러한 경험을 토대로 향후 1,000m 이상급 초장대 사장교 내풍설계를 위한 기초자료로 활용이 가능할 것으로 사료된다.

  • PDF