• Title/Summary/Keyword: main reinforcement

Search Result 617, Processing Time 0.023 seconds

Study on Application of Reinforcement Device to Provide Greater Dynamic Stability for Power Transmission Towers and its Effect

  • Yang, Kyeong-hyeon;Bae, Choon-hee;Jeong, Nam-geun;Kim, Doo-young;Kim, Sung-min;Jang, Yong-hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.33-41
    • /
    • 2016
  • To verify that the friction damper used to high buildings as a kind of control technology of wind vibration can reduce dynamic behaviors of PTTs effectively, slip dampers in this paper are proposed to absorb the energy through relatively frictional movement of slip dampers applied to main post of a PTT (Power Transmission Tower) when dynamic displacement of a PTT occurs. The result of dynamic analysis is presented to determine the capacity of the damper system by controlling damping ratio on the resonance condition. It is observed that by installing slip dampers at a PTT the strain amplitudes of the main post caused by wind load are effectively reduced. Therefore it is shown that the proposed damper satisfies the strengthened wind-load design standards, and its efficacy was also validated experimentally by field testing.

Mechanical properties of reinforced-concrete rocking columns based on damage resistance

  • Zhu, Chunyang;Cui, Yanqing;Sun, Li;Du, Shiwei;Wang, Xinhui;Yu, Haochuan
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.737-747
    • /
    • 2021
  • The objective of seismic resilience is to maintain or rapidly restore the function of a building after an earthquake. An efficient tilt mechanism at the member level is crucial for the restoration of the main structure function; however, the damage resistance of the members should be the main focus. In this study, through a comparison with the classical Flamant theory of local loading in the elastic half-space, an elastomechanical solution for the axial-stress distribution of a reinforced-concrete (RC) rocking column was derived. Furthermore, assuming that the lateral displacement of the rocking column is determined by the contact surface rotation angle of the column end and bending and shear deformation of the column body, the load-lateral displacement mechanical model of the RC rocking column was established and validated through a comparison with finite-element simulation results. The axial-compression ratio and column-end strength were analyzed, and the results indicated that on the premise of column damage resistance, simply increasing the axial-compression ratio increases the lateral loading capacity of the column but is ineffective for improving the lateral-displacement capacity. The lateral loading and displacement of the column are significantly improved as the strength of the column end material increases. Therefore, it is feasible to improve the working performance of RC rocking columns via local reinforcement of the column end.

Mixed Design of Grouting Materials for Settlement Restoration Using Micro Cement (마이크로시멘트를 이용한 침하복원용 그라우팅재료의 배합 설계)

  • Lee, Il-Wha;Lee, Sung-Jin;Yun, Won-Min;Park, Sung-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1786-1792
    • /
    • 2011
  • If the concrete track is settled excessively, it must be restored or reinforced immediately. Especially, reinforcement/restoration method should be applied without affecting on train operation. To deal with this problem, special equipment, process and material should be prepared. This paper suggest a special mixing ratio to restore the settled concrete track. Materials are classified the quick hardening mortar and the middle hardening mortar. The quick hardening mortar is used to restore the settled track and the middle hardening mortar is used to fill the void. These materials must have the appropriate gel time(1-40sec) and compressive strength($5kg/cm^2$). Various compounds is used and the micro cement is used as a main base.

  • PDF

The main considerations in the design and safety assessment case study for Deep & Large size of Tunnel station (대심도 대단면 터널정거장 설계시 주요고려사항 및 안정성 평가에 대한 사례 연구)

  • Jang, Sun-Jong;Hong, Jong-Wan;Jeon, Ki-Chan;Kim, Young-Min;Paik, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.462-469
    • /
    • 2011
  • The design of high-depth and large-section tunnel facilities has been increased lately. The purpose of the design is to avoid inference of existing facilities, enhance public relations and reducing the size of the station, which is advantageous for effective use of underground spaces. Diverse downtown tunnel experience, advanced excavation equipment, reinforcement methods, monitoring technologies and numerical analysis made the design possible. This paper is to introduce the design of high-depth and large-section tunnel facilities via Gimpo airport area of Deagok-Sosa railway BTL project of double-tracking.

  • PDF

A Study on Anti-Corrosion Effect of Powder Self Water Proof Admixture Mixed Corrosion Inhibitor for Reinforcing Steel (철근부식억제형 구체방수재의 방청효과에 관한 연구)

  • 신도철;손형호;김원화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.409-414
    • /
    • 2002
  • This study is intended to develop the self water proof admixture for durability concrete by anti-corrosion inhibitor. Chloride induced corrosion of reinforcement is one of the main factor which cause the deterioration of concrete structure. When the substitute anti-corrosion agents for a part of self waterproofing agent, the corrosion-proof increases for the increased water proofing capacity. And proper self waterproofing agent by cement weight in concrete was generally positive effect to concrete compressive strength, slump, freezing and thawing resistance. Also, permeability and absorption show a straight decrease when self waterproofing agent is added.

  • PDF

Evaluation of Bearing Strength for Composite Joint (합성접합부에서 지압내력 평가식)

  • 김병국;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.347-352
    • /
    • 2002
  • Recent trends in the construction of building frame feature the increase use of composite steel concrete members functioning together in what terms of mixed structural systems. One of such systems, RCS(reinforced concrete column and steel beam) system is introduced and closely examined focusing on bearing strength of the composite joint in this paper. The main objective of this study was to develope one of details to increase bearing capacity while bearing failure is one of the two primary modes of failure in RCS system. Local bearing tests with specimens about 1/3 of the actual concrete column size were performed applying uniform load through steel plate with 100$\times$110mm size. Test results show that specimens with the bearing reinforcement detail developed in this study enhanced the bearing strength by 1.71~3.02 compared to concrete cylinder strength.

  • PDF

Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation

  • Kim, Sang Hun;Aboutaha, Riyad S.
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.333-353
    • /
    • 2004
  • Strength of reinforced concrete beams can easily be increased by the use of externally bonded CFRP composites. However, the mode of failure of CFRP strengthened beam is usually brittle due to tension-shear failure in the concrete substrate or bond failure near the CFRP-Concrete interface. In order to improve the ductility of CFRP strengthened concrete beams, critical variables need to be investigated. This experimental and analytical research focused on a series of reinforced concrete beams strengthened with CFRP composites to enhance the flexural capacity and ductility. The main variables were the amount of CFRP composites, the amount of longitudinal and shear reinforcement, and the effect of CFRP end diagonal anchorage system. Sixteen full-scale beams were investigated. A new design guideline was proposed according to the effects of the above-mentioned variables. The experimental and analytical results were found to be in good agreement.

Modified harmony search and its application to cost minimization of RC columns

  • Medeiros, Guilherme F.;Kripka, Moacir
    • Advances in Computational Design
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • This paper presents a variant of the Harmony Search Algorithm (HS) and its application to discrete optimization. The main proposed modifications regarding original HS are related to stopping criterion and reinitialization of population, called Harmony Memory. In order to investigate the efficiency of the algorithm, it was applied for obtaining optimal sections of reinforced concrete columns subjected to uniaxial flexural compression. To minimize the cost of the section, the amount and diameters of the reinforcement bars and the dimensions of the columns cross sections were considered as design variables. The obtained results were compared to those generated by other optimization methods. Since, to the examples, Harmony Search reached the same results achieved by Simulated Annealing, some additional analysis are presented in order to compare these methods regarding success rate and number of iterations to reach the optimum.

The Performance of Shear Strengthened Reinforced Concrete Columns with Carbon Fiber Sheets (탄소섬유시트로 전단 보강된 철근콘크리트 기둥의 성능 평가)

  • 강경원;하상수;나정민;이용택;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.733-736
    • /
    • 1999
  • R/C columns, one of the main structural members of reinforced concrete structures, usually sustain the axial forces of combined dead loads and live loads. When subjected to lateral loads, however, they are repeatedly subjected to bending moment, shearing forces and brittle failure such as shear failure can occur. This failure mode is not desirable and extra reinforcement is usually needed to induce a ductile failure. The design equation which is used to evaluate the maximum shear strength of a R/C column is still unsatisfactory. The objective of this study was, therefore, to evaluate the hysteretic strengthening effect and the maximum shear strength of R/C columns strengthened using carbon fibers on the seismic performance of the R/C columns under anti-symmetrical by acting moment. According to this study, it may be suggested that the shear of the strengthened R/C column were adequate to induce ductile failures.

  • PDF

An Experimental Study on the Shear behavior of High Strength light-aggregate Reinforced Concrete Beam (고강도 경량 콘크리트 보의 전단거동에 관한 실험적 연구)

  • 박완신;진인철;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.385-388
    • /
    • 1999
  • This study is to investigate experimentally the shear capacity of high-strength reinforced concrete beams subjected to monotonic loading. Nine reinforced concrete beams using high strength concrete $(f'c=380kg/\textrm{cm}^2)$ are tested to determine their diagonal cracking and ultimate shear capacity. The main variables are shear span-depth ratio a/d=1.5, 2.5, 3.5, and shear reinforcement ratio. All specimens are 170mm wide and have a total depth of 300mm. The test results indicate that ACI 318-95(b) Code for shear capacity gave closest agrement with the exsprimental results. The beams with a shear spear-depth ratio 1.5 and 2.5. ACI 318-95 Code underestimates shear strength carried by vertical shear reinforcements.