• Title/Summary/Keyword: main controller

Search Result 954, Processing Time 0.026 seconds

A Robot Controller Development of a Large-scale System for Shipbuilding

  • Kim, Soo-Ho;Kang, Gye-Hyung;Park, Ju-Yi;Chu, Gil-Whoan;Kim, Jin-Wook;Kim, Ji-Yun;Kim, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.472-475
    • /
    • 2005
  • This paper present a robot controller developed for shipbuilding yard. Since shipbuilding process handles large work pieces and has dusty and noisy environment, the developed controller has separated architecture into main control part and servo control part. Main control part is located in control room while servo control part is located near robot with work pieces. Commutation between two parts is done through SynqNet and RS485. Air purging system is adapted to servo control part for better reliability. We aimed open architecture in both hardware and software architecture. For open hardware architecture, we employed Compact PCI (cPCI) because it is widely used bus system and very reliable. Since lots of commercial boards are available with cPCI interface, upgrade and reconfiguration is easy. For open software architecture, Windows XP�� Embedded is selected as operating system (OS), because it is very popular OS and most hardware vender supports device driver for the windows XP.

  • PDF

A Study on Automatic Control Systems for Seawater Desalination Plants (해수 담수화 플랜트 제어 시스템 구성 방안 연구)

  • Ju, Young-Duk;Kim, Kyeong-Beom;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.3-9
    • /
    • 2008
  • Recently, the plant industries are being activated and plant control systems use various technologies. Because the optimized design for the plants is very important for the reducing of operation and maintenance costs, automatic control systems become more important. Plant control systems consist of the master controller, the plant networks, the programming environment for engineering, monitoring software and the field devices. The control systems should have reliability, availability and safety. Modular architecture of hardware and software makes flexible configuration of the control systems. Each component should have diagnostic functions. It follows industrial standards and makes open systems. Open systems increase accessibility against the data which is distributed in the plants. The controllers including processor and communication modules use the up-to-date technology. They have real time and fault tolerant function by duplicating processors or networks. It also enables to make the distributed control systems. The distributed architecture makes more scalable main control system. Automatic control systems can be operated with better performance. In this paper, we analyzed the requirements of the seawater desalination plants and made some consideration facts for developing the optimized controller. Also we described the design concept of the main controller, which consists of several modules. We should validate and complement the design for the reliability and better performance.

  • PDF

Robust speed control of DC Motor using Neural network-PID hybrid controller (신경회로망-PID복합형제어기를 이용한 직류 전동기의 강인한 속도제어)

  • Yoo, In-Ho;Oh, Hoon;Cho, Hyun-Sub;Lee, Sung-Soo;Kim, Yong-Wook;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-89
    • /
    • 2004
  • Robust control for feedback control system is needed according to the highest precision of industrial automation. However, when a neural network feedback control system has an effect of disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, hybrid control method of neural network controller and PID controller is presented. A neural network controller is operated as a main controller, a PID controller is a assistant controller which operates only when some undesirable phenomena occur, e.q., when the error hit the boundary of constraint set. The robust control function of neural network-PID hybrid controller is demonstrated by speed control of Motor.

Discrete-Time Feedback Error Learning with PD Controller

  • Wongsura, Sirisak;Kongprawechnon, Waree
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1911-1916
    • /
    • 2005
  • In this study, the basic motor control system had been investigated. The Discrete-Time Feedback Error Learning (DTFEL) method is used to control this system. This method is anologous to the original continuous-time version Feedback Error Learning(FEL) control which is proposed as a control model of cerebellum in the field of computational neuroscience. The DTFEL controller consists of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward controller, used to solve the tracking control problem, is adaptable. To make such the tracking perfect, the adaptive law is designed so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse model. The PD control theory is selected to be applied in the feedback part to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.

  • PDF

A Study on improvement of communication error between controllers for K56 ammunition transport vehicle (K56 탄약운반장갑차용 제어기 간 통신 오류 개선에 관한 연구)

  • Park, Joo-Young;Kim, Seong-Hoon;Noh, Sang-Wan;Park, Young-Min;Kim, Kyung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.781-788
    • /
    • 2021
  • This paper is the study of a design to eliminate the communication error that occurs between the main controller and the servo controller of the K56 ammunition-carrying armored vehicle. The K56 assists in the operation of the K-55A1 self-propelled gun by automating the supply and loading of ammunition. The CAN communication board of the ammunition carrier is a key-function product mounted inside the main controller and installed for communication with the servo controller. It was confirmed that an undefined error would occur intermittently in the existing CAN communication board, interrupting the operation of the ammunition supply system during the loading process. In this paper, in order to solve the problem, the cause of the failure is identified through analysis and a functional test of the communication signal between the main controller and the servo controller. The error was resolved by redesigning and improving the Read/Write algorithm. Finally, the proposed cause analysis and design effectiveness were verified through the CAN communication board single item test and a system equipment application test. It is expected that this study will serve as a reference for improving defense capabilities through improving the reliability of CAN communication boards and by improving the reliability of the overall electronic equipment using DPRAM.

A Study on the Implementation of RFID-Based Autonomous Navigation System for Robotic Cellular Phone (RCP) (RFID를 이용한 RCP 자율 네비게이션 시스템 구현을 위한 연구)

  • Choe Jae-Il;Choi Jung-Wook;Oh Dong-Ik;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.480-488
    • /
    • 2006
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is one of the most attractive technologies of today. However, unless we find a new breakthrough in the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technologies. Unlike the industrial robot of the past, today's robots require advanced features, such as soft computing, human-friendly interface, interaction technique, speech recognition object recognition, among many others. In this paper, we present a new technological concept named RCP (Robotic Cellular Phone) which integrates RT and CP in the vision of opening a combined advancement of CP, IT, and RT, RCP consists of 3 sub-modules. They are $RCP^{Mobility}$(RCP Mobility System), $RCP^{Interaction}$, and $RCP^{Integration}$. The main focus of this paper is on $RCP^{Mobility}$ which combines an autonomous navigation system of the RT mobility with CP. Through $RCP^{Mobility}$, we are able to provide CP with robotic functions such as auto-charging and real-world robotic entertainment. Ultimately, CP may become a robotic pet to the human beings. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While the former is responsible for the wheel-based navigation of RCP, the latter provides localization information of the moving RCP With the coordinates acquired from RFID-based self-localization controller, trajectory controller refines RCP's movement to achieve better navigation. In this paper, a prototype of $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results on the RCP navigation.

Development of the System Controller for the Airborne Small SAR (KOMSAR) (항공기탑재 소형 영상레이더 (KOMSAR) 시스템 제어기 개발)

  • Hwang, Yong-Chul;Lee, Cheol-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.86-92
    • /
    • 2005
  • Synthetic Aperture Radar is an active sensor utilizing the microwaves in order to get the requested high resolution imageries day or night regardless of the weather conditions. In this paper, the architecture of a real-time system controller for the airborne small SAR system, KOrea Miniature SAR which was developed by Agency for Defense Development is proposed considering the embedded real-time environment. The main purpose of the system controller is to control the internal and the rest of subsystem within SAR system in real-time. The main characteristics of the proposed system controller were implemented using the real-time operating system and the distributed hardware architecture for the small, low weight and real-time operation. The system controller performance and real-time operation were verified and confirmed by the demo flight with the KT-1 airplane.

A Novel Neural Network Compensation Technique for PD-Like Fuzzy Controlled Robot Manipulators (PD 기반의 퍼지제어기로 제어된 로봇의 새로운 신경회로망 보상 제어 기술)

  • Song Deok-Hee;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2005
  • In this paper, a novel neural network compensation technique for PD like fuzzy controlled robot manipulators is presented. A standard PD-like fuzzy controller is designed and used as a main controller for controlling robot manipulators. A neural network controller is added to the reference trajectories to modify input error space so that the system is robust to any change in system parameter variations. It forms a neural-fuzzy control structure and used to compensate for nonlinear effects. The ultimate goal is same as that of the neuro-fuzzy control structure, but this proposed technique modifies the input error not the fuzzy rules. The proposed scheme is tested to control the position of the 3 degrees-of-freedom rotary robot manipulator. Performances are compared with that of other neural network control structure known as the feedback error learning structure that compensates at the control input level.

Flow and Thermal Analyses for Evaluation of a Robot Controller Cooling System (로봇제어기 냉각시스템분석을 위한 열유동 해석)

  • Cho, K.J.;Park, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.414-418
    • /
    • 2001
  • Flow and thermal characteristics of cooling system for the robot controller were numerically as well as experimentally investigated. To obtain the overall flows within controller, the system level solutions were analysed at first and then the board level solutions were pursued to understand the detailed flow and temperature fields near the main board which have a significant influence on the cooling of electronic components. The evaluation for a performance of the heat exchanger was conducted on the basis of the obtained flow and temperature patterns. The results showed that the heat exchanger made a small contribution to the cooling of controller and caused an increase of the temperature in CPU.

  • PDF

Robust $H^{2}$ Controller Design of RTP Systems (RTP 시스템의 견실$H^{2}$제어기 설계)

  • 이상경;김종해박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.409-412
    • /
    • 1998
  • In this paper, we present an $H^2$ controller design of RTP(rapid thermal processing) systems satisfying robust stability and performance using weighted mixed sensitivity minimization. In industrial fields, RTP system is widely used for improving the oxidation and the annealing in semiconductor manufacturing process. The main control factors are temperature control of wafer and uniformity has been solved by PID control method. Because the reference inputs of RTP are ramp, we improve performance of RTP system by the design of $H^2controller$ using the weighted mixed sensitivity function. Also we compare $H^2controller$ with PID controller in terms of performance. An example is proposed to show the validity of proposed method.

  • PDF