• Title/Summary/Keyword: magnetorheological

Search Result 261, Processing Time 0.024 seconds

Ride Comfort Evaluation of Seat Suspension of Commercial Vehicle with MR Damper (MR 댐퍼를 장착한 상용차 시트 서스팬션의 승차감 평가)

  • Shin, Do-Kyun;Do, Xuan Phu;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.32-33
    • /
    • 2014
  • This paper presents control performances of a seat suspension system equipped with magnetorheological (MR) dampers using a new adaptive fuzzy sliding mode controller (FSMC). Adaptive fuzzy controller is formulated by considering the acceleration of the seat. It has been demonstrated that the proposed seat suspension system realized by the adaptive fuzzy sliding mode controller can provide effective performances such as reduced vibration.

  • PDF

Experimental analysis of a semi-actively controlled steel building

  • Occhiuzzi, Antonio;Spizzuoco, Mariacristina
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.721-747
    • /
    • 2005
  • The strong need of verifying theories formulated for semi-active control through applications to real structures is due to the fact that theoretical research on semi-active control systems is not matched by a corresponding satisfactory experimental activity. This paper shows how a smart system including magnetorheological devices as damping elements can be implemented in a large-scale structural model, by describing in detail the kind of electronics (dedicated hardware and software) adopted during the experimental campaign. It also describes the most interesting results in terms of reduction of the seismic response (either experimental or numerical) of the semi-actively controlled structure compared to a passive operating control system, and in terms of the evaluation criteria proposed in the benchmark for seismically excited controlled buildings. The paper also explains how to derive from the classical theory of optimal control the adopted control logic, based on a clear physical approach, and provides an exhaustive picture of the time delays characterizing the control sequence.

Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.233-247
    • /
    • 2016
  • The vibration characteristic analysis of sandwich cylindrical shells subjected with magnetorheological (MR) elastomer and constraining layer are considered in this study. And, the discrete finite element method is adopted to calculate the vibration and damping characteristics of the sandwich cylindrical shell system. The effects of thickness of the MR elastomer, constraining layer, applied magnetic fields on the vibration characteristics of the sandwich shell system are also studied in this paper. Additionally, the rheological properties of the MR elastomer can be changed by applying various magnetic fields and the properties of the MR elastomer are described by complex quantities. The natural frequencies and modal loss factor of the sandwich cylindrical shells are calculated for many designed parameters. The core layer of MR elastomer is found to have significant effects on the damping behavior of the sandwich cylindrical shells.

Control of chaotic dynamics by magnetorheological damping of a pendulum vibration absorber

  • Kecik, Krzysztof
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.743-754
    • /
    • 2014
  • Investigations of regular and chaotic vibrations of the autoparametric pendulum absorber suspended on a nonlinear coil spring and a magnetorheological damper are presented in the paper. Application of a semi-active damper allows controlling the dangerous motion without stooping of system and additionally gives new possibilities for designers. The investigations are curried out close to the main parametric resonance. Obtained numerical and experimental results show that the semi-active suspension may reduce dangerous motion and it also allows to maintain the pendulum at a given attractor or to jump to another one. Moreover, the results show that, for some parameters, MR damping may transit to chaotic motions.

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.

An Optimal Design of Valve-Mode Magnetorheological fluid dampers for Structural Control (구조물 진동제어용 밸브 모드형 자기유변댐퍼의 최적설계 방법)

  • Moon, Seok-Jun;Huh, Young-Chul;Jung, Hyung-Jo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.393-400
    • /
    • 2006
  • One of the most promising semi-active devices proposed for structural control is magnetorheological fluid (MR) dampers. While many researches are making too much of application to structural control, few of papers are considering how to design the MR dampers having good performance. In this paper, the sub-optimal design procedure for MR dampers is presented. This paper shows that an MR damper having the capacity of about 5,000 N is designed according to proposed procedure, as an exmple.

  • PDF

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.