• Title/Summary/Keyword: magnetoresistive properties

Search Result 29, Processing Time 0.02 seconds

Magnetoresistive and Pinning Direction Behaviors of Synthetic Spin Valves with Different Pinning Layer Thickness

  • Cho, Ho-Gun;Kim, Young-Keun;Lee, Seong-Rae
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.147-150
    • /
    • 2002
  • The pinning direction, the spin flop behaviors and the magnetoresistive properties in top synthetic spin valve structure [NiFe/CoFe/Cu/CoFe (t$_{p2}$)/Ru/CoFe (t$_{p1}$)/IrMn] were investigated. The magnetoresistive and pinning characteristics of synthetic spin valves strongly depended on the differences in the two pinning layer thickness, ${\Delta}t(=t_{p2}-t_{p1})$. In contrast to the conventional spin valves, the pinning direction (P1) was canted off with respect to the growth field axis with ${\Delta}t$. We found that the canting angle ${\Phi}$ had different values according to the annealing field direction and ${\Delta}t$. When the samples were annealed at above the blocking temperature of IrMn with zero fields, the canted pinned layer could be set along the growth field axis. Because the easy axis which was induced by the growth field during deposition is still active in all ferromagnetic layers except the IrMn at $250{^{\circ}C}$, the pinning direction could be aligned along the growth field axis, even in 0 field annealing.

Effects of the Hard-Biased Field on the Magnetic and Magnetoresistive Properties of a Crossed Spin-Valve Bead by Computer Simulation

  • S. H. Lim;K. H. Shin;Kim, K. Y.;S. H. Han;Kim, H. J.
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.19-22
    • /
    • 2000
  • The effects of a hard-biased Held on the magnetic and magnetoresistive properties of a crossed spin-valve head are investigated by computer simulation with particular emphasis on the asymmetry of the output signal. The spin-valve considered in this work is NiMn (25 nm)/NiFe (2.5 m)/Cu (3 nm)/NiFe (5.5 m), with a length of 1500 m and a width of 600 nm. A simple model is used where each magnetic layer consists of a single domain, and the magnetoresistance is a function of the angle between the magnetization directions of the two magnetic layers. The ideal crossed spin-valve structure is not realized with the present model and magnetic parameters, but the deviation from ideality is decreased by the hard-biased field. This results in the improvement of the linearity of the output signal with the use of the bias field. The magnetoresistance ratio and magnetoresistive sensitivity, however are reduced. The magnetic properties including the magnetoresistance are found to be strongly affected by magnetostatic interactions, particularly the inter-layer magnetostatic field.

  • PDF

Effects of Rapid Thermal Anneal on the Magnetoresistive Properties of Magnetic Tunnel Junction

  • Lee, K.I.;Lee, J.H.;K. Rhie;J.G. Ha;K.H. Shin
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.126-128
    • /
    • 2001
  • The effect of rapid thermal anneal (RTA) has been investigated on the properties of an FeMn exchange-biased magnetic tunnel junction (MTJ) using magnetoresistance and I-V measurements and transmission electron microscopy (TEM). The tunneling magnetoresistance (TMR) in an as-grown MTJ is found to be ∼27%, while the TMR in MTJs annealed by RTA increases with annealing temperature up to 300$\^{C}$, reaching ∼46%. A TEM image reveals a structural change in the interface of A1$_2$O$_3$layer for the MTJ annealed by RTA at 300$\^{C}$. The oxide barrier parameters are found to vary abruptly with annealing time within a few ten seconds. Our results demonstrate that the present RTA enhances the magnetoresistive properties of MTJs.

  • PDF

Magnetoresistive Properties of Array IrMn Spin Valves Devices (어레이 IrMn 스핀밸브 소자의 자기저항특성 연구)

  • Ahn, M.C.;Choi, S.D.;Joo, H.W.;Kim, G.W.;Hwang, D.G.;Rhee, J.R.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.156-161
    • /
    • 2007
  • To develop array magnetic sensors, specular-type giant magnetoresistive- spin valve (GMR-SV) film of Glass/Ta(5)MiFe(7)/IrMn(10)NiFe(5)/$O_2$/CoFe(5)/Cu(2.6)/CoFe(5)/$O_2$/NiFe(7)/Ta(5)(nm) was deposited by using a high-vacuum sputtering system. One of 15 way sensors in the area of $8{\times}8mm^2$ was Patterned a size of $20{\times}80{\mu}m^2$ in multilayer sample by Photo-lithography. All of 15 sensors with Cu electrodes were measured a uniform magnetic properties by 2-probe method. The highest magnetic sensitivity of MR and output voltage measured nearby an external magnetic field of 5 Oe were MS = 0.5%/Oe and ${\triangle}$V= 3.0 mV, respectively. An easy-axis of top-free layers of $CoFe/O_2/NiFe$ with shape anisotropy was perpendicular to one of bottom-pinned layers $IrMn/NiFe/O_2/CoFe$. When the sensing current increased from 1 mA to 10 mA, the output working voltage uniformly increased and the magnetic sensitivity was almost stable to use the nano-magnetic devices with good sensitive properties.