• Title/Summary/Keyword: magnetoelastic

Search Result 51, Processing Time 0.025 seconds

Magnetoelastic Coupling Coefficients with Film Thicknesses in Ultrathin Films (박막에서의 박막두께에 따른 자기탄성계수의 거동 예측)

  • ;R.C.O'Handley
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.2
    • /
    • pp.112-114
    • /
    • 1995
  • We show physically and mathematically that magnetoelastic coupling coefficients can be predicted to have a form of $B^{eff}=B^{b}+B^{s}/t$, sirniiarily in effective magnetic anisotropy energy in ultrathin films. The inverse thickness dependnce of magnetoelastic coupling coefficients implies lots of technical potentials.

  • PDF

The utilities of U-shape EM sensor in stress monitoring

  • Wang, Guodun;Wang, Ming L.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.291-302
    • /
    • 2004
  • In this paper, load monitoring technologies using U-shape Magnetoelastic (EM or ME) sensors have been exploited systemically for the first time. The steel rod to be tested is the Japan 7 mm piano steel rod. The load dependence of the magnetic properties of the piano steel rod was manifested. Two experimental designs of U-shape magnetoelastic sensors were introduced, one with double pick-up concentric coils wound on the rod to be tested, the other with pick-up coil on one yoke foot. The former design is used to derive the correlation of the relative permeability with elastic tension, while the latter is aimed to reflect the stress induced magnetic flux variation along the magnetic circuit. Magnetostatic simulations provide interpretations for the yoke foot sensing technology. Tests with double pick-up coils indicate that under proper working points (primary voltages), the relative permeability varies linearly with the axial load for the Japan 7 mm piano steel rod. Tests with pick-up coil on the yoke foot show that the integrated sensing voltage changes quadratically with the load, and error is more acceptable when the working point is high enough.

Evaluation of Residual Stresses of Hardened Surface by Magnetoelastic Method (Magnetoelastic Method를 이용한 표면 경화층의 잔류응력 평가)

  • Nam, O.B.;Lee, I.W.;Kim, S.W.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.157-164
    • /
    • 1992
  • Barkhausen noise (BN) is created by the abrupt changes in the magnetization of materials under applied AC magnetizing field. These changes are known to be sensitive to residual and applied stresses. In this study, BN theory was reviewed and it was examined how BN intensity was affected by simultaneous stress, hardness and microstructural changes. Also, magnetoelastic effect was used to evaluate residual stresses through carrying out the cantilever beam test. An increase in BN intensity was observed when applied and residual stress changes from compression into tension. Microstructural softening by tempering also increased the amount of BN. Therefore, the quantitative evaluation of residual stress and microstructural changes will be possible, provided BN method is more studied about various materials through comparing with different stress measuring techniques.

  • PDF

In-line Oil Viscosity Sensor Implementing An Elastomagnetic Ribbon Resonance (자기탄성체 리본의 공진을 이용한 인-라인 오일 점도센서)

  • Kong, H.;Han, H.G.;Markova, L.V.
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • A new magnetoelastic technique of oil viscosity measurement, where the oil viscosity is estimated by frequency shift of natural oscillations of magnetoelastic ribbon, is implemented in this study. Laboratory tests of the detector prototype are performed for measurement of viscosity of base synthetic and mineral oils. It was found that measurement accuracy was better when damping factor was estimated in comparison with accuracy of frequency of damped oscillations. Thus the oil viscosity was calibrated as a function of number of pulses of the damped oscillations of magnetoelastic ribbon. Result generally showed that developed detector is promising for in line oil viscosity measurement in wide viscosity range from 10 cSt up to 600 cSt, while the viscosity measurement was relatively instable when the viscosity of test oil was over 400 cSt.

Magnetic Properties of FeCoSiB Amorphous Films Annealed in Magnetic field (자계중 열처리된 FeCoSiB 아몰퍼스박막의 자기적 특성)

  • 신광호;김영학;사공건
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1305-1309
    • /
    • 2003
  • To utilize FeCoSiB amorphous films for magnetoelastic sensors, the temperature dependency of magnetization (M-T curve) and the magnetization properties of the amorphous films were investigated in this study. As the amount of cobalt In the films increased, the Curie temperature decreased but the crystallization temperature increased. In addition to this, the crystallization temperature was lower than the Curie temperature in the film containing 20 at% cobalt. The optimized annealing condition was set up by analyzing the H-T curve. And then, the amorphous film that has excellent magnetic properties and uni-axal anisotropy could be prepared for construction of the magnetoelastic sensor devices. The coercive force of the film was below 0.5 Oe and the anisotripic field was about 5 Oe.

Vibration Control of Cantilever Beams using Magnetic Damping (자기감쇄를 이용한 외팔보의 진동제어)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.259-264
    • /
    • 1999
  • The magnetoelastic interaction between electrically conducting structures and magnetic fields is suggested to be used as a possible means for vibration suppression mechanism in structural control. Effectiveness of the active control mechanism is demonstrated by an experiment which is performed to examine the basic tenets of magnetically induced vibration and magnetoelastic damping of a cantilevered beam virating in the presence of magnetic fields Experimental results show that the feedback control scheme works effectively. Several strategies are suggested to improve the controllability using the magnetic damping.

  • PDF