• Title/Summary/Keyword: magneto-rheological damper

Search Result 137, Processing Time 0.024 seconds

Response Property of Multi-directional Mount Using Magneto-Rheological Fluid (MR유체를 이용한 다방향 제진형 마운트의 응답특성)

  • 안영공;신동춘;양보석;이일영;김동조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.517-523
    • /
    • 2003
  • This paper presents response property of the squeeze mode type mount using Magneto-Rheological fluid (MR fluid) . The MR mount for the isolation of multi-directional vibrations was constructed in this study. Both the mechanism and shape of the mount are the same as squeeze film dampers for a rotor system. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents In this study.

Design and Analysis of Above Knee Prosthetic Leg Using MR Damper (유동모드 MR 댐퍼가 구비된 대퇴의족의 설계 및 해석)

  • Park, Jinhyuk;Kang, Je-Won;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • A prosthetic knee for above-knee (AK) amputee is categorized into passive and active type. The passive prosthetic knee is generally made by elastic material. Although AK amputee can easily walk by using passive prosthetic leg, knee joint motions are not similar to ordinary persons. The active prosthetic leg can control the knee angle owing to the actuator and microprocessor. However, the active type is not cost-effective and the stability may be lost due to the malfunction of sensors. In order to resolve these disadvantages of passive and active type, a semi-active prosthetic knee which can control the knee angle is proposed in this work. The proposed semi-active one requires a less input energy but provides active type performance. In order to achieve this goal, in this work, a semi-active prosthetic knee using magneto-rheological (MR) damper for AK amputees is designed. The MR damper can support the weight of body by using less energy than actuator of active prosthetic. It can control knee angle by inducing the magnetic field at the time of stance phase. This salient characteristic is evaluated and presented in this work.

Compliance Analysis and Vibration Control of the Safe Arm with MR-based Passive Compliant Joints

  • Yun, Seung-Kook;Yoon, Seong-Sik;Kang, Sung-Chul;Yeo, In-Teak;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2010-2015
    • /
    • 2003
  • In this paper, a design and control of the safe arm with passive compliant joints(PCJ) is presented. Each PCJ has a magneto- rheological damper and maximum 6 springs. Compliance analysis in Cartesian space is performed with the compliance ellipsoid; this analysis shows a map between compliance in the joint space and compliance in Cartesian space. Vibration control of the arm using an input shaping technique is also presented; the results of a simulation and an experiment prove that a fast motion of the safe arm without residual vibration can be performed.

  • PDF

Fuzzy Control of the Seat Suspension System Considering the Acceleration of a Driver's Head (머리 가속도를 고려한 의자 서스펜션의 퍼지제어)

  • Kong Kyoung-chul;Jeon Doyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.572-577
    • /
    • 2005
  • This paper applies the fuzzy logic controller to a semiactive seat suspension system in order to obtain the better ride comfort in constraint of specific rattle space. The seat suspension system used for this research is a scissors-type one with the MR (Magneto Rheological) fluid damper. Since a seat suspension system with a driver can not be exactly modeled, it is effective to control with the fuzzy logic controller. The rule was carefully tuned to effectively reduce the vibration transmitted to a driver. The on-road ride was realized on a hydraulic excitor and the result shows that the fuzzy controller has reduced the vibration of a seat suspension system compared to the continuous skyhook controller.

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

Suppression of tension variations in hydro-pneumatic riser tensioner by using force compensation control

  • Kang, Hooi-Siang;Kim, Moo-Hyun;Bhat Aramanadka, Shankar S.;Kang, Heon-Yong;Lee, Kee-Quen
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.225-246
    • /
    • 2017
  • Excessive dynamic-tension variations on the top-tensioned risers (TTRs) deteriorate the structural integrity and cause potential safety hazards. This phenomenon has become more remarkable in the development of deep-water fields with harsher environmental loads. The conventional prediction method of tension variations in hydro-pneumatic tensioner (HPT) has the disadvantage to underestimate the magnitude of cyclic loads. The actual excessive dynamic tension variations are larger when considering the viscous frictional fluid effects. In this paper, a suppression method of tension variations in HPT is modeled by incorporating the magneto-rheological (MR) damper and linear-force actuator. The mathematical models of the combined HPT and MR damper are developed and a force-control scheme is introduced to compensate the excessive tension variations on the riser tensioner ring. Numerical simulations and analyses are conducted to evaluate the suppression of tension variations in HPT under both regular- and irregular-wave conditions for a drilling riser of a tensioned-leg platform (TLP). The results show that significant reduction of tension variations can be achieved by introducing the proposed system. This research has provided a theoretical foundation for the HPT tension control and related structural protection.

Safe Arm Design with MR-based Passive Compliant Joints and Visco-elastic Covering for Service Robot Applications

  • Yoon Seong-Sik;Kang Sungchul;Yun Seung-kook;Kim Seung-Jong;Kim Young-Hwan;Kim Munsang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1835-1845
    • /
    • 2005
  • In this paper a safe arm with passive compliant joints and visco-elastic covering is designed for human-friendly service robots. The passive compliant joint (PCJ) is composed of a magneto-rheological (MR) damper and a rotary spring. In addition to a spring component, a damper is introduced for damping effect and works as a rotary viscous damper by controlling the electric current according to the angular velocity of spring displacement. When a manipulator interacts with human or environment, the joints and cover passively operate and attenuate the applied collision force. The force attenuation property is verified through collision experiments showing that the proposed passive arm is safe in view of some evaluation measures.

Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control

  • Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.445-458
    • /
    • 2022
  • Some of the control systems used in engineering structures that use sensors and decision systems have some time delay reducing efficiency of the control system or even might make it unstable. In this research, in addition to considering the effect of the time delay in vibration control process, predictive control is used to compensate the time delay. A semi-active vibration control approach with the help of magneto-rheological dampers is implemented. In addition to using fuzzy inference system to determine the appropriate control voltage for MR damper, structural behavior prediction system and specifying future responses are also used such that the time delays occurring within control process are overcome. For this purpose, determination of prediction horizon is conducted for one, five, and ten steps ahead for single degree of freedom structures with periods ranging from 0.1 to 4 seconds, subjected to twenty earthquake excitations. The amount of time delay applied to the control system is 0.1 seconds. The obtained results indicate that for 0.1 second time delay, average prediction error values compared to the case without time delay is 3.47 percent. Having 0.1 second time delay in a semi-active control system reduces its efficiency by 11.46 percent; while after providing the control system with structure behavior prediction, the difference in the results for the control system without time delay is just 1.35 percent on average; indicating a 10.11 percent performance improvement for the control system.

Design and Analysis of Magneto-Rheological Damper Using Permanent Magnet (영구자석을 이용한 전단모드 MR 댐퍼 설계 및 해석)

  • Kim, Wan Ho;Suresh, Kaluvan;Park, Jhin Ha;Choi, Sang Min;Park, Chun-Yong;Kang, Je-Won;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.443-448
    • /
    • 2016
  • A novel Permanent Magnet based Magneto Rheological (PM-MR) damper is proposed in this paper. The principle of proposed MR damper is achieved by designing a linearly varying magnetization area with-respect to the movable permanent magnetic based piston setup. Nowadays, commercially available MR damper uses electromagnetic coils for generating the variable magnetic fields corresponding to the variable damping force. The amount of magnetic field produced by the electromagnetic coils are depends on the biasing current of voltage source. The key enabling concept of the proposed MR damper is to replace the electromagnetic coils and the voltage sources by utilizing the variable area based permanent magnetic piston setup. The proposed unique design structure of PM-MR damper has an increasing shear mode damping force with the piston movement in both jounce and rebound motion. In this research, analytical model of the proposed structure is derived and the structural design of proposed concept is verified using numerical CAD tool. As a result, the damping force is increase when piston movement in both jounce and rebound motion.

Control simulation of MR damper for a cruise bus including the virtual dynamic damper (가상 동흡진기를 고려한 우등버스용 MR댐퍼의 제어 시뮬레이션)

  • Park, S.J.;Sohn, J.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.19-24
    • /
    • 2011
  • In this study, a control method of MR(magneto-rheological) damper for a cruise bus is investigated. A virtual dynamic damper and a sky-hook algorithm are employed to control the damping characteristics of MR damper. Coefficients for a virtual dynamic damper are determined through the parameter identification. A quarter car model of a cruise bus is established by using ADAMS/Car program for the computer simulation. Sine wave excitation and random excitation are used to compare the controlled MR damper with the passive damper. From the simulation results, the performance of MR damper with a virtual dynamic damper is better than that of the passive damper.