• 제목/요약/키워드: magneto-logic

검색결과 18건 처리시간 0.025초

Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control

  • Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.445-458
    • /
    • 2022
  • Some of the control systems used in engineering structures that use sensors and decision systems have some time delay reducing efficiency of the control system or even might make it unstable. In this research, in addition to considering the effect of the time delay in vibration control process, predictive control is used to compensate the time delay. A semi-active vibration control approach with the help of magneto-rheological dampers is implemented. In addition to using fuzzy inference system to determine the appropriate control voltage for MR damper, structural behavior prediction system and specifying future responses are also used such that the time delays occurring within control process are overcome. For this purpose, determination of prediction horizon is conducted for one, five, and ten steps ahead for single degree of freedom structures with periods ranging from 0.1 to 4 seconds, subjected to twenty earthquake excitations. The amount of time delay applied to the control system is 0.1 seconds. The obtained results indicate that for 0.1 second time delay, average prediction error values compared to the case without time delay is 3.47 percent. Having 0.1 second time delay in a semi-active control system reduces its efficiency by 11.46 percent; while after providing the control system with structure behavior prediction, the difference in the results for the control system without time delay is just 1.35 percent on average; indicating a 10.11 percent performance improvement for the control system.

Fuzzy-sliding mode control of a full car semi-active suspension systems with MR dampers

  • Zheng, L.;Li, Y.N.;Baz, A.
    • Smart Structures and Systems
    • /
    • 제5권3호
    • /
    • pp.261-277
    • /
    • 2009
  • A fuzzy-sliding mode controller is presented to control the dynamics of semi-active suspension systems of vehicles using magneto-rheological (MR) fluid dampers. A full car model is used to design and evaluate the performance of the proposed semi-active controlled suspension system. Four mixed mode MR dampers are designed, manufactured, and integrated with four independent sliding mode controllers. The siding mode controller is designed to decrease the energy consumption and maintain robustness. In order to overcome the chattering of the sliding mode controllers, a fuzzy logic control strategy is merged into the sliding mode controller. The proposed fuzzy-sliding mode controller is designed and fabricated. The performance of the semi-active suspensions is evaluated in both the time and frequency domains. The obtained results demonstrate that the proposed fuzzy-sliding mode controller can effectively suppress the vibration of vehicles and improve their ride comfort and handling stability. Furthermore, it is shown that the "chattering" of the sliding mode controller is smoothed when it is integrated with a fuzzy logic control strategy. Although the cost function of the fuzzy-sliding mode control is a slightly higher than that of a classical LQR controller, the control effectiveness and robustness are enhanced considerably.

Fuzzy Distance Estimation for a Fish Robot

  • Shin, Daejung;Na, Seung-You;Kim, Jin-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.316-321
    • /
    • 2005
  • We designed and implemented fish robots for various purposes such as autonomous navigation, maneuverability control, posture balancing and improvement of quick turns in a tank of 120 X 120 X 180cm size. Typically, fish robots have 30-50 X 15-25 X 10-20cm dimensions; length, width and height, respectively. It is essential to have the ability of quick and smooth turning to avoid collision with obstacles or walls of the water pool at a close distance. Infrared distance sensors are used to detect obstacles, magneto-resistive sensors are used to read direction information, and a two-axis accelerometer is mounted to compensate output of direction sensors. Because of the swing action of its head due to the tail fin movement, the outputs of an infrared distance sensor contain a huge amount of noise around true distances. With the information from accelerometers and e-compass, much improved distance data can be obtained by fuzzy logic based estimation. Successful swimming and smooth turns without collision demonstrated the effectiveness of the distance estimation.

Implementation of Uniform Deformation Theory in semi-active control of structures using fuzzy controller

  • Mohammadi, Reza Karami;Haghighipour, Fariba
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.351-360
    • /
    • 2017
  • Protection of structures against natural hazards such as earthquakes has always been a major concern. Semi-active control combines the reliability of passive control and versatility and adaptability of active control. So it has recently become a preferred control method. This paper proposes an algorithm based on Uniform Deformation Theory to mitigate vulnerable buildings using magneto-rheological (MR) damper. Due to the successful performance of fuzzy logic in control of systems and its simplicity and intrinsically robustness, it is used here to regulate MR dampers. The particle swarm optimization (PSO) algorithm is also used as an adaptive method to develop a fuzzy control algorithm that is able to create uniform inter-story drifts. Results show that the proposed algorithm exhibited a desirable performance in reducing both linear and nonlinear seismic responses of structures. Performance of the presented method is indicated in compare with passive-on and passive-off control algorithms.

Retrofitting of a weaker building by coupling it to an adjacent stronger building using MR dampers

  • Abdeddaim, Mahdi;Ounis, Abdelhafid;Shrimali, Mahendra K.;Datta, Tushar K.
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.197-208
    • /
    • 2017
  • Among various retrofitting strategies, use of semi-active control for retrofitting a building structure has gained momentum in recent years. One of the techniques for such retrofitting is to connect a weaker building to an adjacent stronger building by semi-active devices, so that performances of a weaker building are significantly improved for seismic forces. In this paper, a ten storey weaker building is connected to an adjacent stronger building using magneto-rheological (MR) dampers, for primarily improving the performance of the weaker building in terms of displacement, drift and base shear. For this, a fuzzy logic controller is specifically developed by fuzzyfying the responses of the coupled system. The performance of the control strategy is compared with the passive-on and passive-off controls. Pounding Mitigation between the two buildings is also investigated using all three control strategies. The results show that there exists a fundamental frequency ratio between the two buildings for which maximum control of the weaker building response takes place with no penalty on the stronger building. There exists also a fundamental frequency ratio where control of the weaker building response is achieved at the expense of the amplification of the stronger building. However, coupling strategy always improves the possibility of pounding mitigation.

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

Properties and Applications of Magnetic Tunnel Junctions

  • Reiss, G.;Bruckl, H.;Thomas, A.;Justus, M.;Meyners, D.;Koop, H.
    • Journal of Magnetics
    • /
    • 제8권1호
    • /
    • pp.24-31
    • /
    • 2003
  • The discoveries of antiferromagnetic coupling in Fe/Cr multilayers by Grunberg, the Giant Magneto Resistance by Fert and Grunberg and a large tunneling magnetoresistance at room temperature by Moodera have triggered enormous research on magnetic thin films and magnetoelectronic devices. Large opportunities are especially opened by the spin dependent tunneling resistance, where a strong dependence of the tunneling current on an external magnetic field can be found. We will briefly address important basic properties of these junctions like thermal, magnetic and dielectric stability and discuss scaling issues down to junction sizes below 0.01 $\mu\textrm{m}$$^2$with respect to single domain behavior, switching properties and edge coupling effects. The second part will give an overview on applications beyond the use of the tunneling elements as storage cells in MRAMs. This concerns mainly field programmable logic circuits, where we demonstrate the clocked operation of a programmed AND gate. The second 'unconventional' feature is the use as sensing elements in DNA or protein biochips, where molecules marked magnetically with commercial beads can be detected via the dipole stray field in a highly sensitive and relatively simple way.