• Title/Summary/Keyword: magnetization loss

Search Result 159, Processing Time 0.053 seconds

AC Loss Characteristics of Multifilamentary HTS Tapes

  • Amemiya, Naoyuki
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.69-72
    • /
    • 2000
  • AC losses in multifilamentary HTS tapes can be classified to hysteresis loss, coupling loss, and eddy current loss from the viewpoint of their generation mechanism. From the viewpoint of the major magnetic field component generating them, they can be classified to magnetization loss, transport loss, and total loss. Dividing superconductor to fine filaments, twisting filaments bundle and increasing transverse resistivity are effectively reduce magnetization loss and total loss when the external magnetic field is relatively large. Recently, twisted multifilamentary Bi 2223 tapes with pure silver matrix were fabricated and the reduction of magnetization loss was proved experimentally in the parallel magnetic field to the tape wide face. However, when the perpendicular magnetic field is applied, increasing transverse resistivity is required essentially to reduce the AC losses. The transverse resistivity was increased successfully by the introduction of resistive barrier between filaments.

  • PDF

$100 A/mm^2$ Class Bi-2223 Tapes in Electromechanical Devices (전력기기에서 $100 A/mm^2$급 Bi-2223테이프)

  • 류경우;최경주;성기철;류강식
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • $100 A/mm^2$ class Bi-2223 tapes have recently become commercially available. Some important characteristics of the tapes, e .g. critical current, ac loss, characteristics at joint, fault current characteristics, are required for an application such as a power cable or a power transformer. In this paper they have been investigated experimentally. The results indicate that the self-field loss of the high current density tapes is not negligible, compared to resistive loss in a copper wire for the same currents. In a cable, the self-field loss for relatively large currents is much larger than the magnetization loss due to an external field. But in a transformer, the magnetization loss is dominant, compared to the self-field loss. Finally the fault current characteristics show that the high current density tapes are never safe from burn-out even for fault currents with a few cycles.

Measurement of AC Loss in SmBCO Coated Conductor (SmBCO Coated Conductor의 교류손실 측정)

  • Park, M.J.;Kim, W.S.;Lee, J.K.;Oh, S.S.;Ha, H.S.;Kim, H.S.;Ko, R.K.;Yoo, S.I.;Moon, S.H.;Choi, K.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.52-56
    • /
    • 2008
  • According to the improvement of HTS conductor, HTS tapes which have the high current capacity have been recently researched in several nations. For large power application, AC loss is the most important issue in the development of AC superconducting power devices because it is closely related to the system operation efficiency. In 1st generation wire of HTS conductor, BSCCO, AC loss is too large to use for power application. Also, It is well known in recently years that YBCO CC, the 2nd generation wire, has also too much AC loss to apply to AC power devices. There are many trials to develop the new HTS wire having the low AC loss around the world. In this research, we present the measurment result of magnetization losses in SmBCO coated conductors. We measured the magnetization loss generated by perpendicularly exposed external magnetic field and compared with the analytic value of the strip model. Also, we presented the results compared with measured magnetization loss of an YBCO coated conductor.

Round-robin Test on AC Losses in a Technical High-Tc Superconducting Tape (실용고온초전도테이프의 교류손실에 대한 Round-robin테스트)

  • 류경우;최병주;황시돌
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.437-443
    • /
    • 2004
  • In this work the AC loss measurement setup based on an iron core background magnet, not used in a conventional one, has been successfully developed. To prove its validity, a round-robin test for the same Bi-2223 tape sample among three institutes has been done. The results show that the self-field and magnetization losses from the developed setup well agree with the losses measured at two other institutes of Korea Basic Science Institute and Yokohama National University. The measured magnetization losses for parallel or perpendicular fields can be well predicted from the slab model or the strip model for a filamentary region. However the magnetization losses for longitudinal fields can be rather predicted by the slab model for a decoupled filament. The self-field losses are well explained by the Norris ellipse model.

Estimation of the critical current of CORC® conductor using the measured magnetization losses

  • Jinwoo, Han;Ji-Kwang, Lee;Kyeongdal, Choi;Woo-Seok, Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.46-49
    • /
    • 2022
  • Since CORC®(Conductor on Round Core) is made of multiple strands of a superconducting tape to conduct a large current, it is difficult to measure the critical current due to the limitation of a capacity of a power supply. The magnetization loss of a superconductor is dependent on the full penetration field. The full penetration field corresponds to the inflection point of the magnetization loss graph with respect to the external magnetic field. We propose a method to predict the critical current of CORC® indirectly. This method uses the measured magnetization losses of various CORC® samples for the prediction of the critical currents.

Comparison of Magnetization loss of YBCO wires and BSCCO Wires

  • Lim Hyoung-Woo;Lee Hee-Joon;Cha Guee-Soo;Lee Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.33-36
    • /
    • 2006
  • Multi-stacked HTS wires are needed to conduct large current in the power application. In this paper, magnetization losses of the multi-stacked YBCO wire and the BSCCO wire have been measured and compared. 4 types of YBCO wires and BSCCO wires, that is, single, 2-stacked, 3-stacked and 4-stacked, have been tested. HTS multi-stacked wires were fabricated using face-to-face type stacking method. Measurements of magnetization loss were performed under various angles of external magnetic field to consider the anisotropic characteristics of HTS wires. The ratios of the magnetization loss by multiple stacking of superconducting wires were presented. Measurements results show that loss reduction ratios have three distinct regions due to the magnitude of external magnetic field, the material of HTS wire and number of stacks.

Magnetization Loss Characteristic of a Stacked Bi-2223 Conductor (적층 Bi-2223도체의 자화손실 특성)

  • 한형주;류경우;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.46-49
    • /
    • 2002
  • The ac loss is an important issue in the design of superconducting cables and transformers. In these devices the Bi-2223 tapes are usually placed face-to-face In such arrangements ac loss is influenced by adjacent tapes. The effect is investigated by measuring the magnetization loss in the stacked conductor, which consists of various numbers of Bi-2223 tapes. For the stacked conductor in perpendicular field the magnetization loss at low fields is greatly decreased, compared to the loss of the single tape. The loss at high fields is unaffected. This behavior is well described by the slab model.

  • PDF

Comparison of Magnetization Losses in BSCCO Tape and YBCO CC at Arbitrary Direction of External Magnetic Field (BSCCO Tape 선재와 YBCO CC의 외부자장 각도에 따른 자화손실 특성비교)

  • Lee Ji-Kwang;Lim Hyung-Woo;Park Myung-Jin;Cha Gueesoo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.586-591
    • /
    • 2005
  • Magnetization loss of high temperature superconductoring BSCCO tape and YBCO coated conductor(YBCO CC) is most important issue in the development of superconducting power devices. In this paper, the measured results of magnetization losses in BSCCO tape and YBCO CC are presented and compared with each other. Measurements of magnetization losses are performed under various angles of external magnetic field to consider the anisotropic characteristics of YBCO CC. Also, we present the compared results of magnetization losses measured at arbitrary directional magnetic fields and analyzed with perpendicular magnetic field components of those. The results show that magnetization loss of YBCO CC agree well with the analyzed value by it's perpendicular magnetic field component, but BSCCO tape is not.

Numerical Analysis and Measurement of Magnetization Loss in BSCCO Multi-stacked Conductor According to Stacking Geometry (적층 배열형상에 따른 BSCCO 적층선재의 자화손실 특성 수치해석 및 측정)

  • Park, Myung-Jin;Lim, Hyoung-Woo;Lee, Kwang-Youn;Cha, Guee-Soo;Lee, Ji-Kwang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • AC loss is one of the main research area in AC power application using high temperature superconductor(HTS), such as HTS transformer, HTS current limiter and HTS cable, because it is closely related to efficiency, economic estimation and design of power device. A lot of research for various arrangements of HTS tapes have been performed to increase a capacity of transport current because single HTS tape can not satisfy the demanded current capacity in HTS power application. In this paper, we studied magnetization loss by different several arrangements of BSCCO tapes such as Edge-to-Edge type, Face-to-Face type and Matrix type through numerical analysis by 2D-FEM and measurement. As a result, we got the result that the magnetization loss of Face-to-Face type arrangements was lower than those of other arrangement types under the conditions of the same stacking number. We think that the result was due to shield effect by demagnetization of adjacent HTS tapes which are located face to face.

Effects of the insulation thickness on the magnetization loss of the multi-stacked YBCO coated conductor (절연거리 변화에 따른 적층된 YBCO 도체의 자화손실 변화)

  • Lim, Hyoung-Woo;Lee, Hee-Joon;Cha, Guee-Soo;Lee, Ji-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.95-97
    • /
    • 2005
  • Loss in the multi-stacked HTS wires are affected by a number of factor, such as, number of wires used in the stack, direction of external magnetic field and insulation thickness between the wire. This paper examines the effects of the insulation thickness on the magnetization loss of the multi-stacked YBCO coated conductor. Measurements of magnetization loss were performed using 4 different typo of multi-stacked wires and under various angle of external magnetic field. Test results show that loss density per unit volume increased for YBCO coated conductors when thickness of insulation increased. Loss density per unit volume decreased for YBCO coaled conductors when stacking number of tapes increased.

  • PDF