• Title/Summary/Keyword: magnetization behavior

Search Result 163, Processing Time 0.047 seconds

Two-band effect in superconducting parameters and their anisotropies of $MgB_2$ single crystals ($MgB_2$ 단결정의 초전도 상수와 그 이방성에 나타난 두 개의 띠의 영향)

  • Kang, Byeong-Won;Kim, Heon-Jung;Lee, Hyun-Sook;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.132-137
    • /
    • 2007
  • We have studied superconducting parameters of $MgB_2$ single crystals from reversible magnetization measurements with the magnetic field both parallel and perpendicular to the c-axis of the crystals. The temperature dependence of the London penetration depth, ${\lambda}_{ab}{^{-2}}(T)$, obtained from the Hao-Clem analysis on reversible magnetization, shows a clear discrepancy from single-band theories. It is also found that the anisotropies of the London penetration depth, ${\gamma}_{\lambda}$, slowly increases with temperature while the anisotropy of the upper critical field, ${\gamma}_H$, decreases with temperature. These behaviors are in sharp contrast with the behavior of superconductors with a single band. The temperature dependence of ${\lambda}_{ab}{^{-2}}$, and the opposite temperature dependences of ${\gamma}_{\lambda}\;and\;{\gamma}_H$ can be well explained with the theory of the two-band superconductivity.

  • PDF

Magnetic Properties of Ni Nanostructures Made by using Nanoporous Anodic Alumina (AAO를 이용한 Ni 나노구조체의 자기적 특징)

  • Lee, S.G.;Shin, S.W.;Lee, J.;Lee, J.H.;Kim, T.G.;Song, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.105-108
    • /
    • 2004
  • Array of magnetic Ni nanostructures has been fabricated on Si substrate by using nanoporous alumina film as a mask during deposition. The nanostructures are truncated cone-shape and the lateral sizes are comparable to height. While the continuous film shows well-defined in-plane magnetization, the nanostructure shows perpendicular component of magnetization at remanence. The hysterectic behavior of nanostructures is dominated by the demagnetizing field instead of interaction among them.

The Large Magnetocaloric Effect in Amorphous Fe80-xMnxZr10 (x = 4,6,8,10) Alloys

  • Moon, Y.M.;Min, S.G;Kim, K.S.;Yu, S.C.;Kim, Y.C.;Kim, K.Y.
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.142-144
    • /
    • 2005
  • The Magnetization behaviour has been measured for amorphous $Fe_{80-x}Mn_xZr_{10}$ (x = 4,6,8,10) alloys. The Curie temperature decreased from 236 K to 195 K with increasing Mn concentration (x = 4 to x = 10). The magnetization measurements were conducted at temperatures above the Curie temperature in the paramagnetic region. In all samples, the magnetic properties showed superparamagnetic behavior above $T_c$ where the mean magnetic moment of the superparamagnetic spin clusters decreased with increasing temperature. A large magnetic entropy change, ${\Delta}S_M$, which is calculated from H vs M curves associated with the ferromagnetic-paramagnetic transitions in amorphous, has been observed. With Mn concentration increasing, ${\Delta}S_M$ decreases 1.04, 0.95, 0.87 J/kg K at 222, 210, 195 K (the Curie temperature), respectively.

Asymptotic Gaussian Structures in a Critical Generalized Curie-Wiss Mean Field Model : Large Deviation Approach

  • Kim, Chi-Yong;Jeon, Jong-Woo
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.515-527
    • /
    • 1996
  • It has been known for mean field models that the limiting distribution reflecting the asymptotic behavior of the system is non-Gaussian at the critical state. Recently, however, Papangelow showed for the critical Curie-Weiss mean field model that there exist Gaussian structures in the asymptotic behavior of the total magnetization. We construct Gaussian structures existing in the internal fluctuation of the system for the critical case of a generalized Curie-Weiss mean field model.

  • PDF

Microstructure and Magnetic Property of Nanostructured NiZn Ferrite Powder

  • Nam, Joong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1119-1123
    • /
    • 2002
  • Nanostructured spinel NiZn ferrites were prepared by the sol-gel method from metal nitrate raw materials. Analyses by X-ray diffraction and scanning electron microscopy showed the average particle size of NiZn ferrite was under 50 nm. The single phase of NiZn ferrites was obtained by firing at 250${\circ}C$, resulting in nanoparticles exhibiting normal ferrimagnetic behavior. The nanostructured $Ni_{1-X}Zn_XFe_2O_4$ (x=0.0∼1.0) were found to have the cubic spinel structure of which the lattice constants ${\alpha}_2$ increases linearly from 8.339 to 8.427 ${\AA}$ with increasing Zn content x, following Vegard's law, approximately. The saturation magnetization $M_s$ was 48 emu/g for x=0.4 and decreased to 8.0 emu/g for higher Zn contents suggesting the typical ferrimagnetism in mixed spinel ferrites. Pure NiZn ferrite phase substituted by Cu was observed before using the additive but hematite phase was partially appeared at $Ni_{0.2}Zn_{0.2}Cu_{0.6}Fe_2O_4$. On the other hand, the hematite phase in this NiZn Cu ferrite was disappeared after using the additive of acethyl aceton with small amount. The saturation magnetization Ms of $Ni_{0.2}Zn_{0.8-y}Cu_yFe_2O_4$(y=0.2∼0.6) as measured was about 51 emu/g at 77K and 19 emu/g at room temperature, respectively.