• Title/Summary/Keyword: magnetite iron

Search Result 200, Processing Time 0.026 seconds

On the Genesis of Ulsan Iron-Tungsten Deposits (울산(蔚山) 철(鐵)·중석(重石) 광상(鑛床)의 성인(成因))

  • Park, Ki Hwa;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.13 no.2
    • /
    • pp.104-116
    • /
    • 1980
  • The Ulsan mine is one of the largest contact metasomatic magnetite and scheelite deposits in the southeastern part of Korea. Mineralization at the Ulsan mine is localized along the contact between upper Cretaceous volcanic rocks and age unknown limestone which were intruded by 58 m.y. -old biotite-horndlende granite. General zonal sequence of skarn toward crystalline limestone from limestone-volcanics contact is grandite, grandite-salite and salite zones. On the otherhand volcanics origin skarns exhibits zonal sequences toward hornfels from boundary with limestone is garnet, garnet-epidote, and epidote zone. Compositions of garnets and clinopyro xenes are determined by the X-ray diffraction and reflective indecies. Local brecciation of these early skarns were followed by formation of the later skarn as zoned patches, breccia fillings and cross-cutting veins. Paragenetic sequence of late skarn minerals which is exhibited in the zoned patches and veins is an overlapping progression with time from andradite through hedenbergite or actinolite, quartz to calcite deposition. Magnetite metallization followed early formed skarns and pyrite pyrrhoite, sphalerite, galena, tennantite, scheelite and arsenopyrite deposition were simultaneously with hedenbergite, quartz and calcite of late skarn. Filling temperatures of fluid inclusions in calcites range from $160^{\circ}$ to $280^{\circ}C$.

  • PDF

MÖssbauer Spectrum of Lava in Jeju Island (제주도 용암의 MÖssbauer 스펙트럼 연구)

  • Hong, Sung-Rak;Ko, Jeong-Dae;Choi, Won-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.226-230
    • /
    • 2003
  • In this study, we analyzed the volcanic rock and scoria samples taken from special sites of Jeju island in two ways at the room temperature. One is the analysis of the chemical composition using X-ray fluorescence spectrometer, the other is the analysis of minerals in the samples, oxidized iron's genus, valence state and magnetic properties using X-ray diffractometry and Mossbauer spectroscopy. We believe that the volcanic rock and scoria samples are chiefly made of silicate minerals, like SiO$_2$, and they also have olivine, pyroxene, ilmenite, hematite and magnetite. The major Fe fractions of the volcanic rock samples are 2+ charge state and those of the scoria samples are 3+ charge state.

Skarn-Ore Associations and Phase Equilibria in the Yeonhwa-Keodo Mines, Korea (태백산광화대(太白山鑛化帶) 연화(蓮花)-거도광산(巨道鑛山)에 있어서의 스카른과 광석광물(鑛石鑛物)의 수반관계(隨伴關係) 및 상평형(相平衡))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 1983
  • The Yeonhwa (I, II) and Keodo mines, neighboring in the middle part of the Taebaegsan mineral belt, contain three distinct classes of skarn deposits: the zinc-lead skarn at Yeonhwa (I, II), the iron skarn at Keodo south (Jangsan orebodies), and the copper skarn at Keodo north (78 orebodies). The present study characterizes the three classes of skarn deposits mainly in terms of skarn/ore associations examined from chemical compositional point of view, and applies existing quantitative phase diagrams to some pertinent mineral assemblages in these mines. At Yeonhwa I the Wolam I orebody shows a vertical variation in skarn minerals ranging from clinopyroxene/garnet zone on the lower levels through clinopyroxene (without garnet) zone on the intermediate levels, and finally to rhodochrosite veins on the upper levels and surface. Ore minerals, sphalerite and galena, associate most closely with the intermediate clinopyroxene zone. At Keodo, the Jangsan iron skarn hosted in quartz monzodiolite as a typical endoskarn, shows a skarn zoning, from center of orebody to outer side, magnetite zone, magnetite/garnet zone, garnet clinopyroxene zone, and clinopyroxene/epidote/plagioclase zone. The 78 copper skarn in the Hwajeol limestone indicates a zoning, from quartz porphyry side toward limestone side, orthoclase/epidote zone, epidote/clinopyroxene zone, and clinopyroxene/garnet zone; chalcopyrite and other copper sulfides tend to be in clinopyroxene/garnet zone. Mioroprobe analyses of clinopyroxenes and garnets from the various skarn zones mentioned above revealed that the Yeonhwa zinc/lead skarns are characterized by johansenitic clinopyroxene (Hd 25-78, Jo 15-23) and manganoan andraditic garnet (Ad 13-97, Sp 1-24), whereas the Jangsan iron skarn at Keodo by Mn-poor diopsidic clinopyroxene (Di 78-93, Jo 0.2-1.0) and Mn-poor grossularitic grandite (Gr 65-77, Sp 0.5-1.0). The 78 copper skarn at Keodo is characterized by Mn-poor diopsidic-salite (Di 66-91, Jo 0.2-1.1) and Mn-poor andraditic grandite(Ad 40-74, Sp 0.5-1.1). The compositional charateristics of iron, copper, and zinc-lead skarns in the Yeonhwa-Keodo mines are in good correlations with those of the foreign counterparts. Compiling a $T-XCO_2$ phase diagram for the Jangsan endoskarns, a potential upper limit of temperature of the main stage of skarn formation is estimated to be about $530^{\circ}C$, and a lower limit to be $400^{\circ}C$ or below assuming $XCO_2=0.05$ at P total=1kb. Applying a published log $fS_2$-log $fo_2$ diagram to the Keodo 78 and Yeonhwa exoskarns, it is revealed that copper sulfides and zinc-lead sulfides do not co-exist stably below log $fS_2=-4$ and log $fO_2=-23$ at $T=400^{\circ}C$ and ${\times}CO=1$ atm.

  • PDF

Petrochemistry of the Soyeonpyeong titaniferous iron ore deposits, South Korea (소연평도 함티타늄 자철광상의 암석지구화학적 연구)

  • Kim, Kyu Han;Lee, Jung Eun
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.345-361
    • /
    • 1994
  • Lens shaped titanomagnetite ore bodies in the Soyeonpyeong iron mine are embedded in amphibolites, which were intruded into Precambrian metasediments such as garnet-mica schist, marble, mica schist, and quartz schist. Mineral chemistry, K-Ar dating and hydrogen and oxygen stable isotopic analysis for the amphibolites and titanomagnetite ores were conducted to interpret petrogenesis of amphibolite and ore genesis of titanomagnetite iron ore deposits. Amphibolites of igneous origin have unusually high content of $TiO_2$, ranging from 0.94 to 6.39 wt.% with an average value of 4.05 wt.%. REE patterns of the different lithology of the amphibolite show the similar trend with an enrichment of LREE. Amphiboles of amphibolites are consist mainly of calcic amphiboles such as ferro-hornblende, tschermakite, ferroan pargasite, and ferroan pargasitic hornblende. K-Ar ages of hornblende from amphibolite and gneissic amphibolite were determined as $440.04{\pm}6.39Ma$ and $351.03{\pm}5.21Ma$, respectively. This indicates two metamorphic events of Paleozoic age in the Korean peninsula which are correlated with Altin orogeny in China. The titanomagnetite mineralization seems to have occurred before Cambrian age based on occurrence of orebodies and ages of host amphibolites. The Soyeonpyeong iron ores are composed mainly of titanomagnetite, ilmenite, and secondary minerals such as ilmenite and hercynite exsolved in titanomagnetite. The temperature and the oxygen fugacity estimated by the titanomagnetite-ilmenite geothermometer are $500{\sim}600^{\circ}C$ (ave. $550^{\circ}C$) and about $2{\pm}10^{-23}bar$, respectively. Hornblendes from ores and amphibolites which responsible for magnetite ore mineralization, have a relatively homogeneous isotopic composition ranging from +0.8 to +3.9 ‰ in ${\delta}^{18}O$ and from -87.8 to -113.3 ‰ in ${\delta}D$. The calculated oxygen and hydrogen isotopic compositions of the fluids which were in equilibrium with hornblende at $550^{\circ}C$, range from 2.8 to 5.9‰ in ${\delta}^{18}O_{H2O}$ and from -60.41 to -81.31 ‰ in ${\delta}D_{H2O}$. The ${\delta}^{18}O_{H2O}$ value of magnetite ore fluids are in between +6.4 to + 7.9 ‰. All of these values fall in the range of primary magmatic water. A slight oxygen shift means that $^{18}O$-depleted meteoric water be acted with basic fluids during immiscible processes between silicate and titaniferous oxide melt. Mineral chemistry, isotopic compositions, and occurences of amphibolites and orebodies, suggest that the titanomagnetite melt be separated immisciblely from the titaniferous basic magma.

  • PDF

Breakage and Liberation Characteristics of Iron Ore from Shinyemi Mine by Ball Mill (신예미 광산 철광석의 볼밀 분쇄 및 단체분리 특성 연구)

  • Lee, Donwoo;Kwon, Jihoe;Kim, Kwanho;Cho, Heechan
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.11-23
    • /
    • 2020
  • This study aims to investigate breakage and liberation characteristics of iron ore from Shinyemi mine, Jeongseon by ball mill. Parameters of breakage functions for three grade samples of iron ore were obtained using single-sized-feed breakage test and back-calculation based on nonlinear programming. The results showed that with the increase in the grade of iron ore, the breakage rate factor decrease whereas the particle size sensitivity decreases. This results from retardation of microcrack-propagation by magnetite grain in the ore. Breakage distribution analysis showed that the breakage mechanism appear to be impact fracture dominant with the increase of grade owing to the stress distribution effect by magnetite grain. Degree of liberation (DOL) increased with the increase in grade and decrease in particle size, respectively. Using the breakage function and size-DOL relationship, a model that can predict time-dependent-DOL is established. When scale-up factors from operating condition are available, the model is expected to be capable of predicting size and DOL with time in actual mining process.

Synthesis of Fe3O4-δ Using FeC2O4·2H2O by Thermal Decomposition in N2 Atmosphere (N2분위기에서 FeC2O4·2H2O의 열분해에 의한 Fe3O4-δ합성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;An, Suk-Jin;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.253-258
    • /
    • 2012
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) was applied to reducing $CO_2$ gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a $CO_2$ removal process. One of the typical dry methods is $CO_2$ decomposition using activated magnetite ($Fe_3O_{4-{\delta}}$). Generally, $Fe_3O_{4-{\delta}}$ is manufactured by reduction of $Fe_3O_4$ by $H_2$ gas. This process has an explosion risk. Therefore, a non-explosive process to make $Fe_3O_{4-{\delta}}$ was studied using $FeC_2O_4{\cdot}2H_2O$ and $N_2$. $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$ were used as starting materials. So, ${\alpha}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method. During the calcination process, $FeC_2O_4{\cdot}2H_2O$ was decomposed to $Fe_3O_4$, CO, and $CO_2$. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 $m^2/g$ to 9.32 $m^2/g$. The densities of $FeC_2O_4{\cdot}2H_2O$ and $Fe_3O_4$ were 2.28 g/$cm^3$ and 5.2 g/$cm^3$, respectively. Also, the $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by CO. From the TGA results in air of the specimen that was calcined at $450^{\circ}C$ for three hours in $N_2$ atmosphere, the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was estimated. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was 0.3170 when the sample was heat treated at $400^{\circ}C$ for 3 hours and 0.6583 when the sample was heat treated at $450^{\circ}C$ for 3 hours. $Fe_3O_{4-{\delta}}$ was oxidized to $Fe_3O_4$ when $Fe_3O_{4-{\delta}}$ was reacted with $CO_2$ because $CO_2$ is decomposed to C and $O_2$.

Crystal Structure Behavior of Vanadium-Titanium Magnetite (VTM) Ore by Planetary Ball Mill (바나듐 함유 티탄철광의 유성 볼밀에 의한 결정구조 거동)

  • Han, Yosep;Kim, Seongmin;Jung, Minuk;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this study, mechanical grinding using a planetary ball mill was performed under various conditions to evaluate its effect on the crystal structure of vanadium titanium magnetite (VTM) ore from the Kwain Mine in South Korea. The crystal structure of the activated product was also evaluated. Magnetite and ilmenite were identified as the main types of VTM ore used in the Kwain Mine, and the main types of gangue minerals were iron-based silicate minerals. According to the mechanical activation results, the crystallinity and crystal size decreased as the size of the grinding media (balls) decreased, and the amorphization of the sample/ball filling was significant as the amount of the sample was reduced. In addition, as the grinding speed and time increased, the crystal structure significantly changed, proving that these two parameters had a greater effect on the crystal structure than the ball size and sample/ball filling ratio.

Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments (철환원 박테리아에 의한 금속 환원 및 광물형성)

  • Yul Roh;Hi-Soo Moon;Yungoo Song
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2002
  • Microbial metal reduction influences the biogeochemical cycles of carbon and metals as well as plays an important role in the bioremediation of metals, radionuclides, and organic contaminants. The use of bacteria to facilitate the production of magnetite nanoparticles and the formation of carbonate minerals may provide new biotechnological processes for material synthesis and carbon sequestration. Metal-reducing bacteria were isolated from a variety of extreme environments, such as deep terrestrial subsurface, deep marine sediments, water near Hydrothemal vents, and alkaline ponds. Metal-reducing bacteria isolated from diverse extreme environments were able to reduce Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI) using short chain fatty acids and/or hydrogen as the electron donors. These bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite ($Fe_3$$O_4$), siderite ($FeCO_3$), calcite ($CaCO_3$), rhodochrosite ($MnCO_3$), vivianite [$Fe_3$($PO_4$)$_2$ .$8H_2$O], and uraninite ($UO_2$). Geochemical and environmental factors such as atmospheres, chemical milieu, and species of bacteria affected the extent of Fe(III)-reduction as well as the mineralogy and morphology of the crystalline iron mineral phases. Thermophilic bacteria use amorphous Fe(III)-oxyhydroxide plus metals (Co, Cr, Ni) as an electron acceptor and organic carbon as an electron donor to synthesize metal-substituted magnetite. Metal reducing bacteria were capable of $CO_2$conversion Into sparingly soluble carbonate minerals, such as siderite and calcite using amorphous Fe(III)-oxyhydroxide or metal-rich fly ash. These results indicate that microbial Fe(III)-reduction may not only play important roles in iron and carbon biogeochemistry in natural environments, but also be potentially useful f3r the synthesis of submicron-sized ferromagnetic materials.

Petrology of Alkali Volcanic Rocks in Northern part of Ulrung Island (울릉도(鬱陵島) 북부(北部) 알칼리 화산암류(火山岩類)에 대(對)한 암석학적(岩石學的) 연구(硏究))

  • Kim, Yoon Kyu;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.19-36
    • /
    • 1983
  • The study revealed that the sequence of volcanism in Ulrung island can be classified into 5 stages, and the volcanic history is summerized as follow: 1st stage: Eruption of basaltic agglomerates, tuffs and lavas, 2nd stage: Eruption of trachytic and trachyandesitic agglomerates and tuffs, 3rd stage: Eruption of trachyte lavas and their lapilli tuffs, 4th stage: Eruption of trachyte lavas and nepheline phonolites, 5th stage: Eruption of pumice, trachytic ash and lapilli, and plutonic ejecta (fragments of alkali gabbro, monzonite and alkali feldspar syenite) and a subsequent caldera formation. Finally, a small scale eruption of leucite bearing trachyandesite lava in the caldera. Several evidences show that there have been long erosional intervals between the 1st and 2nd stages and between the 4th and 5th stages. A K-Ar age for trachybasalt lava of the 1st stage was determined to be 1.8 Ma, and a $C^{14}$ age, 9300Y. (Machida, 1981) is available for these volcanic events. Therefore, it is considered that volcanic activity of the island above sea level began at least in early Pleistocene, and continued to until 9300 years ago exploding large amount of pumice, prior to pouring out of leucite bearing trachyandesite from the inner caldera. Using solidification index (SI) of Kuno, microscopic texture and mineral composition as criteria of the classification, the volcanic rocks are classified into alkali basalt, trachybasalt, trachyandesite, trachyte and phonolite. These are mostly prophyritic in texture. Main constituent minerals of alkali basalt and trachybasalt are plagioclase, olivine, Ti-augite and magnetite. Principal minerals of trachyandesite are plagioclase, anorthoclase, clinopyroxenes, kaersutite, biotite and magnetite. Trachyte and phonolite consist mainly of anorthoclase, clinopyroxene and magnetite, showing typical trachytic texture in groundmass. In solidification index, alkali basalt ranges from 39 to 27, trachybasalt 17 to 14, trachyandesite 12 to 9 and trachyte 8.15 to 0.72. A trend of compositional variation showing a typical alkali volcanic rock series is revealed on $SiO_2$-oxides and SI-oxides diagrams. In $SiO_2$-total alkali diagram, alkali lime index and An-Ab'-Or diagram, the samples fall into the fields of potassic series of the alkali volcanic rock series, whereas in A-F-M diagram show a trend toward the alkali enrichment with a curve approaching toward the iron apex. In particular, trachybasalt lavas in this island have higher total iron contents which is comparable to alkali rocks in other areas, e. g. as Gough and Tristan volcanic islands located near the Mid-Oceanic ridge in South Atlantic Ocean.

  • PDF

Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea (울산 광산의 철-텅그스텐 스카른화작용)

  • Choi, Seon-Gyu;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.41-54
    • /
    • 1993
  • The Ulsan Fe-W deposit, which can be classified as a calcareous skarn deposit, is represented by ore pipe consisting principally of magnetite and lesser amounts of scheelite with minor sulphides, sulphosaits, arsenides, sulpharsenides, etc. At Ulsan mine, metasomatic processes of skarn growth may be divided broadly into two stages based on the paragenetic sequence of calc-silicate minerals and their chemical composition; early and late skarn stages. Early stage has started with the formation of highly calcic assemblages of wollastonite, diopsidic clinopyroxene and nearly pure grossular, which are followed by the formation of clinopyroxenes with salite to ferrosalite composition and grandite garnets with intermediate composition. Based on these calc-silicate assemblages, the temperatures of early skarn formations have been in the ranges of $550^{\circ}$ to $450^{\circ}$. The calc-silicate assemblages formed during the earlier half period of late skarn stage show the enrichment of notable iron and slight manganese, and the depletion of magnesium; clinopyroxenes are hedenbergitic, and grandite garnets are andraditic. The formation temperatures during this skarn stage are inferred to have been in the range of $430^{\circ}$ to $470^{\circ}C$ at low $X_{CO_2}$ by data from fluid inclusions of late andraditic garnets. The later half period of late skarn stage is characterized by the hydrous alteration of pre-existing minerals and the formation of hydrous silicates. The main iron-tungsten mineralization representing prominent deposition of magnetite immediately followed by minor scheelite impregnation has taken place at the middle of early skarn stage, while complex polymetallic mineralization has proceeded during and after the late skarn stage. Various metals and semimetals of Fe, Ni, Co, Cu, Zn, As, Mo, Ag, In, Sn, Sb, Te, Pb and Bi have been in various states such as native metal, sulphides, arsenides, sulphosaits, sulpharsenides and tellurides.

  • PDF