• Title/Summary/Keyword: magnetics

Search Result 7,928, Processing Time 0.036 seconds

High Frequency Properties of Patterned Fe-Al-O Thin Films

  • N.D. Ha;Park, B.C.;B.K. Min;Kim, C.G.;Kim, C.O.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.194-194
    • /
    • 2003
  • As a result of the recent miniaturization an enhancement in the performance of thin film inductors and thin film transformers, there are increased demands for the thin films with high magnetic permeability in the high frequency range, high saturation magnetization, in high electrical resistivity, and low coercive force. In order to improve high frequency properties, we will investigate anisotropy field by shape and size of pattern. The Fe-Al-O thin films of 16mm and 1 $\mu\textrm{m}$ thickness were deposited on Si wafer, using RF magnetron reactive sputtering technique with the mixture of argon and oxygen gases. The fabricating conditions are obtained in the working partial pressure of 2mTorr, O$_2$ partial pressure of 5%, input power of 400W, and Al pellets on an Fe disk with purity of 99,9%. Magnetic properties of the continuous films as followed: the 4$\pi$M$\_$s/ of 19.4kG, H$\_$c/ of 0.6Oe, H$\_$k/ of 6.0Oe and effective permeability of 2500 up to 100㎒ were obtained. In this work, we expect to enhance effect of magnetic anisotropy on patterned of Fe-Al-O thin films.

  • PDF

Effects of 835-MHz Radiation on the Intracellular Calcium, Reactive Oxygen Species, and F-actin Polymerization in Rat-2 Fibroblasts

  • Hong Sae-Yong;Lee Zee-Won;Son Tae-Ho;Chang Sung-Keun;Choi Jong-Soon
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • We investigated the effects of 835-MHz electromagnetic field (EMF), one of the most popular communication frequency band in Korean code-division multiple-access (CDMA) mobile phone system, on cellular signal transduction. For this, we examined the change of intracellular calcium $([Ca^{2+}]_i)$, reactive oxygen species (ROS) and F-actin polymerization after exposure to 835-MHz EMF followed by the treatment of agonists in Rat-2 fibroblast cells. Culture cells were pretreated with serum-tree medium and concomitantly exposed to 835-MHz at specific absorption rate (SAR) of 4.0 W/kg for 24 hr in a specialized designed apparatus based on Transverse Electro Magnetics (TEM) wave theory. Intracellular $Ca^{2+}$ responses to lysophosphatidic acid (LPA) and epidermal growth factor (EGF) in Rat-2 fibroblast after exposure to 835-MHz EMF were shown to be similar pattern as observed in normal cultured cells. However, the LPA-induced calcium spiking was slightly delayed to 7 sec and sustained thereafter to a little higher ground level under 835-MHz EMF radiation compared to unexposed cells. ROS production level by LPA in the exposed cells was not different from that in control. Furthermore, LPA induced the production of stress fibers with no significant difference in the exposed and unexposed cells. These results suggest that mobile phone radiation (835-MHz, SAR 4.0 W/kg) may not be directly related to signal transduction in Rat-2 fibroblasts except the slight effect of calcium spiking in LPA-induced cells but remain to be further elucidated for possible indirect intervention.

  • PDF

Magnetic Properties and Electronic Structure of $Pt_3Ni$ (001), (110) and (111) Surfaces: Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.129-129
    • /
    • 2011
  • The limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of properties and electronic structures of seven layered $Pt_3Ni$ (001), (110), and (111) surfaces. The first principle method based on density functional theory (DFT) is carried out. It is found that the bulk $Pt_3Ni$ has a ferromagnetic ground state with the ordered fcc type L12 structure, which is in good agreement with other results. Non magnetic Pt has the induced magnetic moment due to the strong hybridization between 3d Ni and 5d Pt. The magnetic moment of Pt and Ni enhanced on the surface of each due to surface effect however the magnetic moment of surface Pt in the Pt-segregated Pt3Ni (111) decreased and the magnetic moment of Ni in Ni rich subsurface increased significantly. The calculated d band centers of Pt explain the possibilities for oxygen absorption and play the important roles in altering the catalytic properties. The spin polarized densities of states are presented in order to understand physical properties of Pt in different surfaces in detail.

  • PDF

Magnetic and Magnetotransport Properties of (1-x) $La_{0.7}Sr_{0.3}MnO_3-xRE_2O_3$ (RE=La, Nd) Composites

  • Kim, Hyo-Jin;Kang, Young-Min;Yoo, Sang-Im
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.12a
    • /
    • pp.192-192
    • /
    • 2009
  • Magnetic and magnetotransport properties of (1-x) $La_{0.7}Sr_{0.3}MnO_3-xRE_2O_3$ (RE=La, Nd) (x = 0.025, 0.05, 0.075, 0.1, 0.2, 0.3) composite polycrystalline samples were systematically studied. Samples were prepared using conventional solid-state reaction. LSMO and $RE_2O_3$ react at high temperature and become chemically compatible. The ferromagnetic-paramagnetic transition temperatures ($T_c$) of the LSMO-$Nd_2O_3$ composite samples were decreased 313K~349K with increasing x, while the $T_c$ values of the LSMO-$La_2O_3$ composite samples were almost unaltered in the range of 355K~358K, representing that the ferromagnetism of LSMO might be more seriously degraded by Nd substitution on the ($La_{0.7}Sr_{0.3}$) site. However, LSMO-$RE_2O_3$ composite samples exhibit greatly enhanced low field magnetoresistance (LFMR) and dMR/dH value without an appreciable increase in its resistivity. Remarkably improved LFMR properties are attributed to LSMO grain boundaries acting as effective spin-dependent scattering centers. The relationship among the $RE_2O_3$ addition, microstructure, magnetic and magnetotransport properties will be discussed in this paper.

  • PDF

Magnetic Properties of FePt:C Nanocomposite Film

  • Ko, Hyun-Seok;A. Perumal;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.220-221
    • /
    • 2003
  • Equiatomic FePt and CoPt alloy thin films have received considerable attention as possible magnetic and magneto-optic recording because of their high magnetic anisotropy energy and high coercivity. The high coercivity in these thin films is due to the presence of finely dispersed ordered FePt phase mixed with disordered FePt phase. However, a high temperature treatment, either substrate heating during deposition or post annealing, is needed to obtain the ordered L1$\_$0/ phase with high value of magneto crystalline anisotropy. Recent microstructural studies on these films suggest that the average grain size ranges from 10-50 nm and the grains are magnetically coupled between each other. On the other hand, the ultrahigh-density magnetic recording media with low media noise imposes the need of a material, which consists of magnetically isolated grains with size below 10 nm. The magnetic grain isolation can be controlled by the amount of additional non-magnetic element in the system which determines the interparticle separation and therefore the interparticle interactions. Recently, much research work has been done on various non-magnetic matrices. Preliminary studies showed that the samples prepared in B$_2$O$_3$ and Carbon matrices have shown strong perpendicular anisotropy and fine grain size down to 4nm, which suggest these nanocomposite films are very promising and may lead to the realization of a magnetic medium capable of recording densities beyond 1 Tb/in$^2$. So, in this work, the effect of Carbon doping on the magnetic properties of FePt nanoparticles were investigated.

  • PDF

Theoretical considerations on the giant magnetoimpedance effect in amorphous ribbons

  • Phan, Manh-Huong;Nguyen Cuong;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.60-61
    • /
    • 2003
  • Theoretical considerations on a giant magneto-impedance (GMI) effect in amorphous ribbons (i.e., thin films) have been made in terms of the expressions of effective permeability and impedance derived in the frame of classical electrodynamics and ferromagnetism. The dependence of GMI effect on the external do magnetic field (H$\_$ext/) and the frequency of alternating current are simulated and discussed in the knowledge of energy conversion consisting of the current energy loss, the ferromagnetic energy consumption, and the magnetic energy storage in the film. The obtained results are summarized as follow: (a) As frequency f< 20 ㎒, the real part of effective permeability (${\mu}$′) changes slightly. The peak of the ${\mu}$′curve always locates at H$\_$ext/=H$\_$ani/ - the anisotropy field. However, the peak value of ${\mu}$′ tends to increase with increasing frequency in the frequency range of 11-20 ㎒. (b) In the frequency range, f= 21-23 ㎒, a negative peak additionally appears. Meanwhile, both the positive and negative peak values rapidly increase with increasing frequency and their peak positions shift towards a high H$\_$ext/. (c) The positive peak value of ${\mu}$′ starts to decrease at f= 29 ㎒ and its negative peak does so at about 35 ㎒. Then, both peaks keep such a tendency and their peak positions move to high H$\_$ext/, as increasing frequency. (d) The dependence of the imaginary part of effective permeability (${\mu}$") on the external dc magnetic field and the frequency of the alternating field indicates that there is only one peak involved in ${\mu}$" for the whole frequency range. (e) The impedance vs. magnetic field curves at various frequencies show that there is a critical value of frequency around f= 18-19 ㎒ where the transition between two frequency regimes occurs; the one (low frequency) in which ${\mu}$′ predominantly contributes to the GMI effect and the other (high frequency) in which ${\mu}$" determines the GMI effect.

  • PDF

Single Crystalline CoFe/MgO Tunnel Contact on Nondegenerate Ge with a Proper Resistance-Area Product for Efficient Spin Injection and Detection

  • Jeon, Kun-Rok;Min, Byoung-Chul;Lee, Hun-Sung;Shin, Il-Jae;Park, Chang-Yup;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.96-96
    • /
    • 2010
  • We report the proper resistance-area products in the single crystalline bcc CoFe/MgO tunnel contact on nondegenerate n-Ge desirable for efficient spin injection and detection at room temperature. The electric properties of the crystalline CoFe(5 nm)/MgO(1.5,2.0,2.5 nm)/n-Ge(001) tunnel contacts have been investigated by I-V-T and C-V measurements. Interestingly, the tunnel contact with the 2-nm MgO exhibits the ohmic behavior with low resistance-area products, satisfying the theoretical conditions required for significant spin injection and detection. This result is ascribed to the presence of MgO layer between CoFe and n-Ge, enhancing the Schottky pinning parameter as well as shifting the charge neutrality level.

  • PDF

Fast Precessional Motion of Co/Pd Multilayer Systems Induced by Heat Treatment

  • Sohn, Jeong-Woo;Lee, Kyeong-Dong;Song, Hyon-Seok;Kim, Seon-Ock;Kim, Ji-Wan;Jeong, Jae-Woo;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.94-94
    • /
    • 2010
  • Co/Pd multilayer systems have been investigated with much attention for a long time due to the high and easily controllable perpendicular magnetic anisotropy. Two [Pd(1)/Co(0.4 nm)]5 multilayer systems - one is as-deposit, and the other is annealed at $350^{\circ}C$ - are studied with an all-optical approach. A two-color optical pump probe setup using 30 fs laser pulse at 82 MHz repetition rate is used to measure the time-resolved magneto-optical Kerr signal. It turns out the heat treatment enhances the perpendicular magnetic anisotropy, and leads to faster magnetization precession. The frequency reaches 30 GHz in the annealed sample, which is a factor of 2 larger compared to the as-deposit film.

  • PDF

Enhanced bone morphogenic protein adenoviral gene delivery to bone marrow stromal cells using magnetic nanoparticle

  • Lee, Jung-Tae;Jung, Jae-Whan;Choi, Jae-Yong;Kwon, Tae-Geon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • Objectives: This study investigated the question of whether adenoviral magnetofection can be a suitable method for increasing the efficacy of gene delivery into bone marrow stromal cell (BMSC) and for generation of a high level of bone morphogenic protein (BMP) secretion at a minimized viral titer. Materials and Methods: Primary BMSCs were isolated from C57BL6 mice and transduced with adenoviral vectors encoding ${\beta}$ galactosidase or BMP2 and BMP7. The level of BMP secretion, activity of osteoblast differentiation, and cell viability of magnetofection were measured and compared with those of the control group. Results: The expression level of ${\beta}$ galactosidase showed that the cell transduction efficiency of AdLacZ increased according to the increased amount of magnetic nanoparticles. No change in cell viability was observed after magnetofection with 2 ${\mu}L$ of magnetic nanoparticle. Secretion of BMP2 or BMP7 was accelerated after transduction of AdBMP2 and 7 with magnetofection. AdBMP2 adenoviral magnetofection resulted in up to 7.2-fold higher secretion of BMP2, compared with conventional AdBMP2-transduced BMSCs. Magnetofection also induced a dramatic increase in secretion of BMP7 by up to 10-fold compared to the control. Use of only 1 multiplicity of infection (moi) of magnetofection with adenoviral transduction of AdBMP2 or AdBMP7 resulted in significantly higher transgene expression compared to 20 moi of conventional adenoviral transduction. Conclusion: Magnetic particle-mediated gene transudation is a highly efficient method of gene delivery to BMSCs. Magnetofection can lower the amount of viral particles while improving the efficacy of gene delivery.