• Title/Summary/Keyword: magnetic storm

Search Result 65, Processing Time 0.029 seconds

CORRELATION BETWEEN MONTHLY CUMULATIVE AURORAL ELECTROJET INDICES, DST INDEX AND INTERPLANETARY ELECTRIC FIELD DURING MAGNETIC STORMS (자기폭풍 기간 동안의 월별 누적 오로라 제트전류 지수, Dst 지수 및 행성간 전기장 사이의 상관관계)

  • Park, Yoon-Kyung;Ahn, Byung-Ho;Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.409-418
    • /
    • 2005
  • Magnetospheric substorms occur frequently during magnetic storms, suggesting that the two phenomena are closely associated. We can investigate the relation between magnetospheric substorms and magnetic storms by examining the correlation between AE and Dst indices. For this purpose, we calculated the monthly cumulative AU, $\mid{AL}\mid$ and $\mid{Dst}\mid$ indices. The correlation coefficient between the monthly cumulative $\mid{AL}\mid$ and $\mid{Dst}\mid$ index is found to be 0.60, while that between monthly cumulative AU and $\mid{Dst}\mid$ index is 0.28. This result indicates that substorms seem to contribute to the development of magnetic storms. On the other hand, it has been reported that the interplanetary electric field associated with southward IMF intensifies the magnetospheric convection, which injects charged particles into the inner magnetosphere, thus developing the ring current. To evaluate the contribution of the interplanetary electric field to the development of the storm time ring current belt, we compared the monthly cumulative interplanetary electric field and the monthly cumulative Dst index. The correlation coefficient between the two cumulative indices is 0.83 for southward IMP and 0.39 for northward IMF. It indicates that magnetospheric convection induced by southward IMF is also important in developing magnetic storms. Therefore, both magnetospheric substorm and enhanced magnetospheric convection seem to contribute to the buildup of magnetic storm.

Modeling of Energetic Neutral Atom (ENA) Emissions During a Magnetic Storm for CINEMA/TRIO

  • Lee, Ensang;Kwon, Hyuk-Jin;Park, Jong-Sun;Seon, Jongho;Jin, Ho;Kim, Khan-Hyuk;Lee, Dong-Hun;Wang, Linghua;Lin, Robert P.;Parks, George K.;Sample, John;Roelof, Edward C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.117.1-117.1
    • /
    • 2012
  • Energetic neutral atoms (ENAs) are emitted by charge exchange collisions between energetic ions and cold neutral atoms. ENAs can be used as an alternative measure of the energetic ions in the source region because they maintain the energy and pitch angle of the source energetic ions. In the present study we present simulation results of the ENA emissions during a magnetic storm to be measured by the STEIN instrument onboard the CINEMA/TRIO satellites. The CINEMA/TRIO mission consists of three identical cubesats with low-altitude orbits. The STEIN instrument onboard each cubesat can measure ENAs with energies from ~4 keV to ~20 keV as well as suprathermal electrons and ions. The measurement of ENA emissions from ring current by STEIN is simulated using the models for energetic ring current ions and geocoronal neutral atoms. Especially we will discuss about the energy spectrum of the ENAs and the effect of transient variations of the ring current.

  • PDF

Forecast of geomagnetic storm using coronal mass ejection and solar wind condition near Earth

  • Kim, Rok-Soon;Park, Young-Deuk;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2013
  • To improve the forecast capability of geomagnetic storms, we consider the real time solar and near Earth conditions together, since the characteristics of CMEs can be modified during their transit from the Sun to the Earth, and the geomagnetic storms may be directly affected by not only solar events but also near Earth interplanetary conditions. Using 55 CME-Dst pairs associated with M- and X-class solar flares, which have clearly identifiable source regions during 1997 to 2003, we confirm that the peak values of negative magnetic field Bz and duskward electric field Ey prior to Dst minimum are strongly related with Dst index. We suggest the solar wind criteria (Bz<-5 nT or Ey>3 mV/m for t>2 hr) for moderate storm less than -50 nT by modifying the criteria for intense storms less than -100 nT proposed by Gonzalez and Tsurutani (GT, 1987). As the results, 90% (28/31) of the storms are correctly forecasted by our criteria. For 15 exceptional events that are incorrectly forecasted by only CME parameters, 12 cases (80%) can be properly forecasted by solar wind criteria. When we applying CME and solar wind conditions together, all geomagnetic storms (Dst<-50 nT) are correctly forecasted. Our results show that, the storm forecast capability of the 2~3 days advanced warning based on CME parameters can be improved by combining with the urgent warning based on the near Earth solar wind condition.

  • PDF

Magnetic Particles in Rainfalls: An Environmental Magnetic Evaluation (강수 함유 자성물질에 대한 환경자기학적 분석)

  • Baatar, Amarjargal;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • To evaluate a potential wash-out effect of rainfalls, a preliminary environmental magnetic test was attempted. Measurement of isothermal remanent magnetization (IRM) and intensive microscopic observations were carried out on the solid particles extracted from the rainfalls collected for the past year (2009) in Daejeon, Korea. Dust particles collected from the rain-free (daily dust) or dustheavy days (during the Asian dust storm event) were also used as a comparison. IRMs were unanimously low for the solid particles extracted from the rainfalls, indicating an efficient wash-out effect of rainfalls as long as the magnetic concentration is concerned. Electron microscopy identified carbonbearing material, (carbon-coated) magnetite, and quartz. It is highly likely that the carbon-containing particles were produced by anthropogenic fossil fuel combustion.

SEASONAL AND UNIVERSAL TIME VARIATIONS OF THE AU, AL AND DST INDICES

  • AHN BYUNG-HO;MOON GA-HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.93-99
    • /
    • 2003
  • Various attempts have been made to explain the: pronounced seasonal and universal time (UT) variations of geomagnetic indices. As one of such attempts, we analyze the hourly-averaged auroral electroject indices obtained during the past 20 years. The AU and AL indices maximize during summer and equinoctial months, respectively. By normalizing the contribution of the solar conductivity enhancement to the AU index, or to the eastward electrojet, it is found that the AU also follows the same semiannual variation pattern of the AL index, suggesting that the electric field is the main modulator of the semiannual magnetic variation. The fact that the variation pattern of the yearly-mean AU index follows the mirror image of the AL index provides another indication that the electric field is the main modulator of magnetic disturbance. The pronounced UT variations of the auroral electrojet indices are also noted. To determine the magnetic activity dependence, the probability of recording a given activity level of AU and AL during each UT is examined. The UT variation of the AL index, thus obtained, shows a maximum at around 1200-1800 UT and a minimum around 0000-0800 UT particularly during winter. It is closely associated with the rotation of the geomagnetic pole around the rotational axis, which results in the change of the solar-originated ionospheric conductivity distribution over the polar region. On the other hand the UT variation is prominent during disturbed periods, indicating that the latitudinal mismatch between the AE stations and the auroral electrojet belt is responsible for it. Although not as prominent as the AL index, the probability distribution of the AU also shows two UT peaks. We confirm that the Dst index shows more prominent seasonal variation than the AE indices. However, the UT variation of the Dst index is only noticeable during the main phase of a magnetic storm. It is a combined result of the uneven distribution of the Dst stations and frequent developments of the partial ring current and substorm wedge current preferentially during the main phase.

IONOSPHERIC OBSERVATION USING KOREAN SATELLITES

  • MIN KYOUNG W.;LEE JAEJIN;PARK JAEHEUNG;KIM HEEJUN;LEE ENSANG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.109-115
    • /
    • 2003
  • We report the results of the ionospheric measurement obtained from the instruments on board the Korea Multi-Purpose Satellite - 1 (KOMPSAT-l). We observed a deep electron density trough in the nighttime equatorial ionosphere during the great magnetic storm on 15 July 2000. We attribute the phenomena to the up-lifted F-layer caused by the enhanced eastward electric field, while the spacecraft passed underneath the layer. We also present the results of our statistical study on the equatorial plasma bubble formation. We confirm the previous results regarding its seasonal and longitudinal dependence. In addition, we obtain new statistical results of the bubble temperature variations. The whole data set of measurement for more than a year is compared with the International Reference Ionosphere (IRI). It is seen that the features of the electron density and temperature along the magnetic equator are more prominent in the KOMPSAT-l observations than in the IRI model.

Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind

  • Kim, Myeong Joon;Park, Kyung Sun;Lee, Dae-Young;Choi, Cheong-Rim;Kim, Rok Soon;Cho, Kyungsuk;Choi, Kyu-Cheol;Kim, Jaehun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.237-244
    • /
    • 2017
  • Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker (~7.4 nT) than that of MCs (~10.6 nT). Also, the average duration time and expansion speed of SMFRs are ~2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of ~10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H < -50 nT (for identification of storm occurrence) and AL < -200 nT (for identification of substorm occurrence), we found that for 88 SMFR events (corresponding to 28.5 % of the total SMFR events), substorms occurred after the impact of SMFRs, implying a possible triggering of substorms by SMFRs. In contrast, we found only two SMFRs that triggered storms. We emphasize that, based on a much larger database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.

ON THE RELATIONSHIP BETWEEN SUBSTORM CURRENT SYSTEM AND BURSTY BULK FLOWS AT NEAR TAIL (서브스톰 전류계와 BBF 사이의 관계에 대하여)

  • LEE DAE-YOUNG;MIN KYOUNG WOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.53-56
    • /
    • 2000
  • We investigate the critical issue on how the BBF (bursty bulk flow) is related to the substorm current wedge formation. Observationally, after analysing data sets from Geotail spacecraft at near tail and many ground magnetic observatories for 9 months period of 1996, we find three BBF events that clearly occurred at the center of the wedge with region I type FAC (field-aligned current), and two other BBF events that were seen outside the wedge sector. Theoretically, we suggest that the substorm current wedge generation by BBF is most likely when the h' VB contribution is dominant in the well-known MHD $J_{II}$ expression (Vasyliunaus, 1984) or when the divergence of the cross-tail current carried by the particle's gradient/curvature drift is predominantly sufficient at the moment of the BBF arrival at near tail.

  • PDF

Response of the Geomagnetic Activity Indices to the Solar Wind Parameters

  • Ahn, Byung-Ho;Park, Yoon-Kyung
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • This study attempts to show how the geomagnetic indices, AU, AL and Dst, respond to the interplanetary parameters, more specifically, the solar wind electric field VBz during southward interplanetary magnetic field (IMF) period. The AU index does not seem to respond linearly to the variation of southward IMF. Only a noticeable correlation between the AU and VBz is shown during summer, when the ionospheric conductivity associated with the solar EUV radiation is high. It is highly likely that the effect of electric field on the eastward electrojet intensification is only noticeable whenever the ionospheric conductivity is significantly enhanced during summer. Thus, one should be very cautious in employing the AU as a convection index during other seasons. The AL index shows a significantly high correlation with VBz regardless of season. Considering that the auroral electrojet is the combined result of electric field and ionospheric conductivity, the intensification of these two quantities seems to occur concurrently during southward IMF period. This suggests that the AL index behaves more like a convection index rather than a substorm index as far as hourly mean AL index is concerned. Contrary to the AU index, the AL index does not register the maximum value during summer for a given level of VBz. It has something to do with the findings that discrete auroras are suppressed in sunlight hemisphere (Newell et al. 1996), thus reducing the ionospheric conductivity during summer. As expected, the Dst index tends to become more negative as VBz gets intensified. However, the Dst index (nT) is less than or equal to 15VBz(mV/m) + 50(Bz < 0). It indicates that VBz determines the lower limit of the storm size, while another factor(s), possibly substorm, seems to get further involved in intensifying storms. Although it has not been examined in this study, the duration of southward IMF would also be a factor to be considered in determining the size of a storm.

RBSP (Radiation Belt Storm Probes) Mission, Space weather and Science Topics

  • Lee, Jae-Jin;Kim, Kyung-Chan;Hwang, Jung-A;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.89.2-89.2
    • /
    • 2012
  • Radiation Belt, discovered by Van Allen in 1958, is a region energetic particles are trapped by the Earth's magnetic field. To measure charged particles and fields in the radiation belt, RBSP(Radiation Belt Storm Probes) mission will be launched in September 2012 by NASA. RBSP mission consists of two spacecraft having orbit from 600 km to 30,000 km and rotates the Earth twice a day. This mission is not designed just for scientific purpose but have operational function broadcasting real time data for space weather monitoring. As a program of KASI-NASA cooperation, KASI is constructing RBSP data receiving antenna that will be installed by April in Daejeon. With this antenna system, NASA can receive RBSP data for 24 hours and KASI also get space weather information to protect Korean GEO satellites. In this presentation, we will discuss how we use RBSP data for space weather forecasting. In addition, we will talk about science topics that can be achieved by RBSP mission. Especially we focus on the dusk-side electron precipitation that has been considered as a main mechanism of electron dropout events. We show the dusk-side precipitation is closely associated with radiation belt electron loss with NOAA-POES data, and why RBSP mission is important to understand radiation belt physics.

  • PDF