• 제목/요약/키워드: magnetic sorbent

검색결과 5건 처리시간 0.02초

Caving Disaster and Oil Spill Removal Adsorbent Mag-Sorbent

  • Soh, Dea-Wha;Soh, Hyun-Jin;Soh, Hyun-Jun;Soh, Hyun-Jae
    • 동굴
    • /
    • 제85호
    • /
    • pp.28-34
    • /
    • 2008
  • For trying to frontal attack of new solution by fusion of technical tasks and conditions with it's solving methods of the essential tasks of marine resource development and environmental conservation in addition with elements of electronic high-technologies, the magnetic oil spill adsorbent of Mag-Sorbent* has been prepared and proposed to dispose oil spill from the marine disaster for preventing oil pollution by using them and their system with sequentially circular collection of oil spill mag-sorbent powder and fabrics on the electronic equipment like as barge robot for the scheme of sustainable development of environment-friendly technology. Because of recent marine accident occurred at Tae-An cost and earthquake in Sichuan province were very large scale accident of disaster to prevent and manage of them. So, it was verified from the experiment of electronic demonstrator that the skimmer system of oil spill mag-sorbent powder and fabrics prepared was very effective and useful technique to collect oil spill samples on the water surface specially at the closed space of underground cave. At this point, the barge-based electronic remote control was very useful system operating easily on the marine fields but also water level at the small pool to skim it with the environment-friendly system of the disposing marine disaster and preventing oil pollution using magnetic adsorbents of Mag-Sorbent*.

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • 제5권1호
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Enhanced Arsenic(V) Removal from Aqueous Solution by a Novel Magnetic Biochar Derived from Dairy Cattle Manure

  • Akyurek, Zuhal;Celebi, Hande;Cakal, Gaye O.;Turgut, Sevnur
    • Korean Chemical Engineering Research
    • /
    • 제60권3호
    • /
    • pp.423-432
    • /
    • 2022
  • Magnetic biochar produced from pyrolysis of dairy cattle manure was used to develop an effective sorbent for arsenic purification from aqueous solution. Biomass and magnetized biomass were pyrolyzed in a tube furnace with 10 ℃/min heating rate at 450 ℃ under nitrogen flow of 100 cm3/min for 2 h. Biochars were characterized by SEM-EDX, BET, XDR, FTIR, TGA, zeta potential analysis. The resultant biochar and magnetic biochar were opposed to 50-100-500 ppm As(V) laden aqueous solution. Adsorption experiments were performed by using ASTM 4646-03 batch method. The effects of concentration, pH, temperature and stirring rate on adsorption were evaluated. As(V) was successfully removed from aqueous solution by magnetic biochar due to its highly porous structure, high aromaticity and polarity. The results suggest dairy cattle manure pyrolysis is a promising route for managing animal manure and producing a cost effective biosorbent for efficient immobilization of arsenic in aqueous solutions.

Evaluation of Antioxidant Activities and Active Compounds Separated from Water Soluble Extracts of Korean Black Pine Barks

  • Shen, Chang-Zhe;Jun, Hong-Young;Choi, Sung-Ho;Kim, Young-Man;Jung, Eun-Joo;Oh, Gi-Su;Joo, Sung-Jin;Kim, Sung-Hyun;Kim, Il-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3567-3572
    • /
    • 2010
  • Black pine barks from the southern region of Korea were extracted using pressurized hot water and the water soluble extracts were then separated in a stepwise fashion using a variety of solvents, column chromatography (CC), thin layer chromatography (TLC), and high pressure liquid chromatography (HPLC). The antioxidant activities of each fraction and the active compounds were determined based on the radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), reductive potential of ferric ion, and total phenol contents. A DPPH test showed that the half maximal effective concentration ($EC_{50}$ value : $6.59{\pm}0.31\;{\mu}g/mL$) of the ethyl acetate fraction (ca. 0.67%) was almost the same as that of the control compounds and inversely proportional to the value of the total phenol contents. The cell viability of the water extracts was confirmed by methyl thiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) with enzyme linked immune sorbent assay (ELISA). Catechin, epicatechin, quercetin and ferulic acid were isolated from the ethyl acetate fraction as active compounds and identified by nuclear magnetic resonance. The antioxidant activity as value of DPPH of each of the separated compounds was lower than the ethyl acetate fraction, and ferulic acid was the lowest among these compounds.

페로니켈슬래그와 제강급랭슬래그의 인 흡착특성 (Phosphorus Adsorption Characteristic of Ferronickel and Rapid Cooling Slags)

  • 박종환;서동철;김성헌;박민규;강병화;이상원;이성태;최익원;조주식;허종수
    • 한국환경농학회지
    • /
    • 제33권3호
    • /
    • pp.169-177
    • /
    • 2014
  • 본 연구는 철강산업에서 배출되는 산업폐기물의 일종인 페로니켈슬래그와 제강급랭슬래그의 인공습지나 여과시스템에서 인을 효과적으로 흡착 처리하기 위해 페로니켈슬래그와 제강급랭슬래그를 입경별(유효입경: 0.5 mm, 2.5 mm)로 구분하여 Freundlich 및 Langmuir 등온흡착실험을 통해 인에 대한 흡착특성을 조사하였다. Freundlich 등온흡착식에 의한 페로니켈슬래그(FNS)와 제강급랭슬래그(RCS)의 인 흡착능(K)은 RCS 0.5(0.5105) > RCS 2.5(0.3571) > FNS 2.5(0.0545) ${\fallingdotseq}$ FNS 0.5(0.0400) 순이었으며, 본 실험에 사용된 모든 슬래그의 흡착강도(1/n) 값이 0.19954-0.3657범위로 1보다 작으므로 모두 L형의 등온흡착식으로 판단 할 수 있었다. Langmuir 등온흡착식에 의한 인의 최대흡착능(a)은 FNS 0.5, FNS 2.5, RCS 0.5, RCS 2.5가 각각 320, 187, 3,582 및 2,983 mg/kg이었다. 슬래그의 실제 흡착량과 Freundlich와 Langmuir 등온흡착 일반식을 적용한 결과 실제 인의 흡착량은 전반적으로 Langmuir 등온흡착식이 Freundlich 등온흡착식에 비해서 잘 일치하였다. 이상의 결과를 미루어 볼 때, Freundlich와 Langmuir 등온흡착식을 이용한 슬래그의 인 흡착능력은 제강급랭슬래그(RCS)가 페로니켈슬래그(FNS)보다 높았으며, 고로급랭슬래그는 인공습지나 여과시스템에서 인 흡착을 위한 여재로 적용이 가능할 것으로 판단된다.