• Title/Summary/Keyword: magnetic separation

Search Result 406, Processing Time 0.029 seconds

Feasible waste liquid treatment from electroless nickel-plating by intense magnetic field of HTS bulk magnets

  • Oka, T.;Furusawa, M.;Sudo, K.;Dadiel, L.;Sakai, N.;Seki, H.;Miryala, M.;Murakami, M.;Nakano, T.;Ooizumi, M.;Yokoyama, K.;Tsujimura, M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.37-40
    • /
    • 2021
  • Nickel (Ni) is a kind of the rare earth resources. Since Ni-containing waste is drained after several plating operations in the factories, the effective recycling technique has been expected to be introduced. An actual magnetic separation technique using HTS bulk magnet generating the strong magnetic field has succeeded in collecting the paramagnetic slurry containing Ni-sulphate coarse crystals which were fabricated from the Ni-plating waste. The Ni compound in the collected slurry was identified as NiSO4/6H2O, showing slight differences in the particle size and magnetic susceptibility between the samples attracted and not-attract to the magnetic pole. This preferential extraction suggests us a novel recycling method of Ni resource because the compound is capable of recycling back to the plating processes as a raw material.

Separation of Selenite from Inorganic Selenium Ions using TiO2 Magnetic Nanoparticles

  • Kim, Jongmin;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3362-3366
    • /
    • 2013
  • A simple and quick separation technique for selenite in natural water was developed using $TiO_2$@$SiO_2/Fe_3O_4$ nanoparticles. For the synthesis of nanoparticles, a polymer-assisted sol-gel method using hydroxypropyl cellulose (HPC) was developed to control particle dispersion in the synthetic procedure. In addition, titanium butoxide (TBT) precursor, instead of the typical titanium tetra isopropoxide, was used for the formation of the $TiO_2$ shell. The synthesized nanoparticles were used to separate selenite ($Se^{4+}$) in the presence of $Se^{6+}$ or selenium anions for the photocatalytic reduction to $Se^0$ atom on the $TiO_2$ shell, followed by magnetic separation using $Fe_3O_4$ nanoparticles. The reduction efficiency of the photocatalytic reaction was 81.4% at a UV power of 6W for 3 h with a dark adsorption of 17.5% to the nanoparticles, as determined by inductively coupled plasma-mass spectrometry (ICP-MS). The developed separation method can be used for the speciation and preconcentration of selenium cations in environmental and biological analysis.

Selective Leaching Process of Precious Metals (Au, Ag, etc.) from Waste Printed Circuit Boards (PCBs) (廢 PCBs부터 귀금속(Au, Ag 등)의 선택적 침출공정)

  • 오치정;이성오;국남표;김주환;김명준
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.29-35
    • /
    • 2001
  • This study was carried out to recover gold, silver and valuable metals from the printed circuit boards (PCBs) of waste computers. PCBs samples were crushed under 1 mm by a shredder and separated into 30% conducting and loft nonconducting materials by an electrostatic separator. The conducting materials contained valuable metals which were then used as feed materials for magnetic separation. 42% of magnetic materials from the conducting materials was removed by magnetic separation as nonvaluable materials and the others, 58% of non magnetic materials, was used as leaching samples containing 0.227 mg/g Au and 0.697 mg/g Ag. Using the materials of leaching from magnetic separation, more than 95% of copper, iron, zinc, nickel and aluminium was dissolved in 2.0M sulfuric acid solution, added with 0.2M hydrogen peroxide at $85^{\circ}C$. Au and Ag were not extracted in this solution. On the other hand, more than 95% of gold and 100% of silver were leached by the selective leaching with a mixed solvent (0.2M($NH_4$)$_2$$S_2$$O_3$,0.02M $CuSO_4$,0.4M $NH_4$OH). Finally, the residues were reacted with a NaCl solution to leach Pb whereas sulfuric acid was used to leach Sn. Recoveries reached 95% and 98% in solution, respectively.

  • PDF

Studies of the Recovery of Iron Content from Iron and Steel-Making Slags by Magnetic Separation (자력 선별에 의한 철강 슬래그로부터의 철분 회수에 관한 연구)

  • Ban Bong-Chan;Yu Sung-Nam;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.36-41
    • /
    • 2003
  • Although slag has an enough potential as the secondary resources due to its high content of iron, quite a large amount of slags are simply landfilled when market prices of iron and steel are not so beneficial. The purpose of this study is to investigate the basic characteristics regarding the recovery of iron content from slag by magnetic separation method for the enhancement of its recycling rate. Three kinds of slags such as blast furnace slag, water-cooled converter slag, and air-cooled converter slag were tested taking the strength of magnetic field, revolving speed of drum, and feeding rate of slag as the influential factors on the magnetic separation. For blast furnace slag, the recovery of iron was observed to increase as drum speed and feeding rate were lowered. For water-cooled converter slag, iron recovery was raised as feeding rate was increased and drum speed was lowered. Also, finer slag particles were observed to be more favorable for the higher recovery of iron content. Regarding air-cooled converter slags, higher iron recovery was accomplished when both feeding rate and drum speed were increased or decreased. In addition, when the magnetic field strength was increased the iron recovery was raised, however, the iron grade of separated product was observed to diminish because of the co-separation of impurities.

Application and Type of Magnetic Separator (자력선별장비의 유형과 활용)

  • Lee, Sang-hun;Yang, Injae;Choi, Seungjin;Park, Jayhyun
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.11-22
    • /
    • 2018
  • Magnetic separators has been used in the mining and the recycling fields in general, and is still applied in wide variety of fields. It is classified into the equipments for separating coarse ferrous scrap from non-ferrous materials and the equipments for concentrating fine ferromagnetic particles below 3mm. Magnetic separation equipments for concentrating fine materials also falls into two categories of low intensity and high intensity magnetic separators. The former is used for ferromagnetic materials but also paramagnetic materials of high magnetic susceptibility, and the latter for paramagnetic materials of lower magnetic susceptibility. Both low and high intensity magnetic separators could be utilized either dry and wet. Recently, the High gradient magnetic separators(HGMS) used in the range of less than 0.7 tesla has been gradually replaced by the magnetic separator made of rare earth permanent magnets commercialized in the 1980s. In addition, the expansion of nanotechnology in terms of synthetic magnetic materials in the environmental and biological fields is expected to contribute positively to the development of magnetic separation technology.

Solution NMR spectroscopy for investigation of liquid-liquid phase separation

  • Saio, Tomohide;Okumura, Masaki;Lee, Young-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.2
    • /
    • pp.47-52
    • /
    • 2020
  • Liquid-liquid phase separation (LLPS) of biomolecules, a newly-found phase behavior of molecules in the liquid phase, has shown to its relationship to various biological function and misfolding diseases. Extensive studies have increasingly revealed a general mechanism of LLPS and characterized the liquid droplet; ho wever, intermolecular interactions of proteins and structural states of LLPS-inducing proteins inside of the droplet remain largely unknown. Solution NMR spectroscopy has emerged as a powerful approach as it provides invaluable information on protein intermolecular interactions and structures at the atomic and residue level. We herein comprehensively address useful techniques of solution NMR including the effect of paramagnetic relaxation enhancement for the study on the LLPS and droplet based on recent studies.

Pulsed Electron Paramagnetic Resonance Application on the Photoinduced Charge Separation of Alkylphenothiazine Derivatives in Molecular Assemblies

  • Kang, Young-Soo;Park, Chan-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.2
    • /
    • pp.82-90
    • /
    • 2000
  • Photoinduced charge separation of alkylphenothiazines in molecular assemblies such as positively, negatively and neutrally charged micelle interface results in the paramagnetic phenothiazine cation radical. This was studied as a model system for the light energy conversion into chemical energy. The photoproduced phenothaizne cation radical was identified and its amount was quantized with electron spin resonance (ESR). The microenvironment of photoproduced cation radical was studied with pulsed-ESR. Such a charge separation is enhanced by the optimization of various structural factors of the molecular assemblies. The structural factors of molecular assemblies have focused on the interface charge, interface structure with different headgroups and interfacial perturbation by disolving interface active organic additives.

  • PDF

Physical Separation and Leaching for Waste Printer PCBs Recycling (폐프린터 기판 재활용을 위한 물리적 전처리 및 침출)

  • Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Min-Seuk;Kim, Eun-Young;Kim, Sang-Bae
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.304-307
    • /
    • 2005
  • Printed circuit boards (PCBs) of the printer are composed of various organic and inorganic compounds as well as metals and alloys. This study was conducted to recover valuable metals from used PCBS by physical separation and leaching. The PCBs was crushed, sieved, classified by zig zag classifier and magnetic constituents were removed by the magnetic separation. The non-magnetic constituents of sizes between 1.2 and 0.6 mm especially containing high quantity of Cu (e.g. 83% on metal base and 31% on total base) were used for the leaching experiment. The effect of the nature and concentration of acids and reaction temperature were investigated. The Cu leaching rate to 98.5% in 2M nitric acid, pulp density 100g/L, $90^{\circ}C$, 300rpm, 1hr leaching.

  • PDF

Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

  • Kwon, Hee-won;Kim, JeongJin;Ha, Dong-Woo;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

Removal of iron scale from feed-water in thermal power plant by magnetic separation - Introduction to chemical cleaning line -

  • Yamamoto, Junya;Mori, Tatsuya;Hiramatsu, Mami;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijim, Sigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.6-10
    • /
    • 2018
  • Removal of iron oxide scale from feed-water in thermal power plant can improve power generation efficiency. We have proposed a novel scale removal system utilizing High Gradient Magnetic Separation (HGMS). This system can be applied to high temperature and pressure area. We have conducted the lab-scale model experiments using ${\varphi}50mm$ filters and it demonstrated high removal efficiency in HGMS, but scale-up of the system is required toward practical use. In this study, we conducted a large scale mock-up HGMS experiment. We used the superconducting solenoidal magnet with ${\varphi}400mm$ bore and demonstrated that our HGMS system can achieve sufficient scale removal capacity that is required to introduce into both off-line and on-line system.