• Title/Summary/Keyword: magnetic scale

Search Result 694, Processing Time 0.027 seconds

Magnetic Nano-biosensor Technology (자성 나노바이오센서 기술)

  • Lee, Jung-Rok
    • Vacuum Magazine
    • /
    • v.5 no.1
    • /
    • pp.4-8
    • /
    • 2018
  • Many devices based on magnetism such as power generators and motors are frequently used in real life. Magnetic materials at nano-scale can be utilized as storage devices such as magnetic tapes and hard disk drives as well as spintronics. In addition to spintronics, magnetic biosensors are another interesting application of magnetic devices at nano-scale. Here, we briefly review magnetic nano-biosensors including Hall-effect sensors, giant magnetoresistive sensors, and tunnel magnetoresistive sensors for many biomedical applications.

Nano-scale Precision Polishing Characteristics using a Micro Quill and Magnetic Chain Structure (미세공구와 자기체인구조를 이용한 초정밀 폴리싱 특성)

  • 박성준;안병운;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.34-42
    • /
    • 2004
  • A new polishing technique for three dimensional micro/meso-scale parts is suggested using a micro quill and a magnetic chain structure. The principle of this method is to polish the target surface with the collected magnetic brushes at a micro tool by the non-uniform magnetic field generated around the tool. In a typical magnetic abrasive finishing process magnetic particles and abrasive particles are unbonded each other. But, to finish the three dimensional small parts bonded magnetic abrasive have to be used. Bonded magnetic abrasives are made from direct bonding, and their polishing characteristics are also examined. Alumina, silicon carbide and diamond micro powders are used as abrasives. Base metal matrix is carbonyl iron powder. It is found that bonded magnetic abrasives are superior to unbonded one by experiment. finally, the polished surface roughness is evaluated by atomic force microscope.

Removal of iron oxide scale from feed-water in thermal power plant using superconducting magnetic separation

  • Nishijima, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.22-25
    • /
    • 2019
  • The superconducting magnetic separation system has been developing to separate the iron oxide scale from the feed water of the thermal power plant. The accumulation in the boiler lowers the heat exchange rate or in the worst case damages it. For this reason, in order to prevent scale generation, controlling pH and redox potential is employed. However, these methods are not sufficient and then the chemical cleaning is performed regularly. A superconducting magnetic separation system is investigated for removing iron oxide scale in a feed water system. Water supply conditions of the thermal power plant are as follows, flow rate 400 t / h, flow speed 0.2 m / s, pressure 2 MPa, temperature $160-200^{\circ}C$, amount of scale generation 50 - 120 t / 2 years. The main iron oxide scale is magnetite (ferromagnetic substance) and its particle size is several tens ${\mu}m$. As the first step we are considering to introduce the system to the chemical cleaning process of the thermal power plant instead of the thermal power plant itself. The current status of development will be reported.

Development of superconducting high gradient magnetic separation system for scale removal from feed-water in thermal power plant

  • Shibatani, Saori;Nakanishi, Motohiro;Mizuno, Nobumi;Mishima, Fumihito;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Maeda, Tatsumi;Shigemoto, Naoya;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • A Superconducting High Gradient Magnetic Separation (HGMS) system is proposed for treatment of feed-water in thermal power plant [1]. This is a method to remove the iron scale from feed-water utilizing magnetic force. One of the issues for practical use of HGMS system is to extend continuous operation period. In this study, we designed the magnetic filters by particle trajectory simulation and HGMS experiments in order to solve this problem. As a result, the quantity of magnetite captured by each filter was equalized and filter blockage was prevented. A design method of the magnetic filter was proposed which is suitable for the long-term continuous scale removal in the feed-water system of the thermal power plant.

Noncontact displacement sensors using magnetic scale (자기스케일을 이용한 비접촉식 변위센서)

  • Lee, Sung-Pil;Seo, Young-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.197-201
    • /
    • 2009
  • This paper studies on the noncontact displacement sensor system to detect the displacement of the cylinder rod. For an inexpensive and a simple process, magnetic scales are printed on the cylinder rod, and magnetized by the specially designed magnetizer that has an yoke through the alternation of N and S pole. Noncontact displacement sensor system consists of cylinder with magnetic scales, Hall sensor, linear guide, controller and display. The system can detect the displacement of moving cylinder with 5 cm/sec in the case of 1 mm magnetic scale. It shows a possibility of position detection of hydraulic cylinder and air cylinder.

The Change of Magnetic Easy Axis in Ion Beam Mixed Co/Pt Multilayer

  • Kim, S.H.;Chang, G.S.;Son, J.H.;Kim, T.Y.;Chae, K.H.;Kang, S.J.;Lee, J.;Jeong, K.;Lee, Y.P.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.162-162
    • /
    • 2000
  • We have studied magnetic properties of Co/Pt multilayered films which have attracted great interest as high-density magneto-optical (MO) recording media due to their good MO properties. For this study, [Pt(45 )/Co(35 )]$\times$8 films were deposited with a Pt buffer layer of 60 on Si(100) substrate by alternating electron-beam evaporation in a high vacuum and were ion beam mixed by using 80keV Ar+ at 25$0^{\circ}C$. Especially, an external magnetic field was added to help changing magnetic property during ion beam mixing (IBM). The intermixing of Co and Pt layers after IBM was confirmed with Rutherford Backscattering Spectroscopy (RBS) and Transmission Electron Microscopy (TEM). The MO property of the film was measured with magneto-optical Kerr spectrometer and the change of magnetic easy axis in the film plane was observed from Ker loop data. This anomalous result might be correlated with the change of atomic structure due to the intermixing effect.

  • PDF

EVOLUTION OF THE PRIMORDIAL MAGNETIC FIELD I. INITIAL MORPHOLOGY AND STRENGTH

  • Jung, Jae-Hun;Park, Chang-Bom
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.109-117
    • /
    • 1995
  • The morphology and strength of the primordial magnetic field which is generated spontaneously in the early universe are studied for three models: (1) inflation (2) primordial magnetized bubble and (3) primordial turbulence models, We calculate the power spectra of magnetic field that are scale-free and proportional to $k^{1.5},k^{3{\sim}4}$ and $k^{2/3}$, respectively. The configurations of magnetic field having these power spectra are visualized. To constrain the present strength of the primordial magnetic field we calculate the anisotropy of the microwave background radiation in Bianchi type I universe with globally homogeneous magnetic field. From the COBE limit of the quadrupole moment of $({\delta}T/T)_{l=2}$ the present strength of horizen-scale magnetic fields $B_p$ is constrained to be less than $9{\times}10^{-8}G$.

  • PDF

A COMPREHENSIVE VIEW OF LARGE-SCALE MAGNETIC FIELDS, WITH EMPHASIS ON THE GALACTIC MAGNETIC FIELD NEAR THE SUN

  • HEILES CARL
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.151-154
    • /
    • 1996
  • We examine the observations of large-scale magnetic fields in the Universe. We begin at the largest scale with clusters of galaxies and work our way down through galaxies and finally to the Milky Way. on which we concentrate in detail. We examine the observations of the Galactic magnetic field, and their interpretation, under the philosophy that the Galactic magnetic field is like that in other spiral galaxies. We use pulsar data. diffuse Galactic synchrotron emission, and starlight polarization data to discuss the Galaxy's global magnetic configuration and the uniform ($B_u$), random ($B_r$), and total ($B_t$) components of the field strength. We find disagreement among conclusions derived from the various data sets and argue that the pulsar data are not the best indicator for large-scale Galactic field. Near the Solar circle, we find that the azimuthal average of $B_t$ is 4.2$\mu$G and we adopt $B_u\~$2.2 and $B_r\~3.6{\mu}G$. $B_t$ is higher in spiral arms, reaching $\~5.9{\mu}G$. $B_t$ is higher for smaller $R_{Gal}$, reaching $\~8.0{\mu}G$ for $R_{Gal}$ = 4.0 kpc. The pattern of field lines is not concentric circles but spirals. The inclination of the magnetic spiral may be smaller than that of the Galaxy's spiral arms if our sample, which refers primarily to the interarm region near the Sun, is representative. However, it is not inconceivable that the local field lines follow the Galaxy's spiral pattern, as is observed in external galaxies.

  • PDF

Removal of iron scale from feed-water in thermal power plant by magnetic separation - Introduction to chemical cleaning line -

  • Yamamoto, Junya;Mori, Tatsuya;Hiramatsu, Mami;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijim, Sigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.6-10
    • /
    • 2018
  • Removal of iron oxide scale from feed-water in thermal power plant can improve power generation efficiency. We have proposed a novel scale removal system utilizing High Gradient Magnetic Separation (HGMS). This system can be applied to high temperature and pressure area. We have conducted the lab-scale model experiments using ${\varphi}50mm$ filters and it demonstrated high removal efficiency in HGMS, but scale-up of the system is required toward practical use. In this study, we conducted a large scale mock-up HGMS experiment. We used the superconducting solenoidal magnet with ${\varphi}400mm$ bore and demonstrated that our HGMS system can achieve sufficient scale removal capacity that is required to introduce into both off-line and on-line system.