• Title/Summary/Keyword: magnetic permeability

Search Result 499, Processing Time 0.035 seconds

RF Power Absorption Enhancement of Magnetic Composites with Conductive Grid

  • Nam, Baek-Il;Kim, Jin-U;Kim, Ki-Hyeon
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.129-132
    • /
    • 2012
  • To evaluate the electromagnetic power absorption in near field, the magnetic composites with the conductive grids were simulated using the typical permeability frequency profiles. The transmission power absorptions of the magnetic composites on microstrip line were extracted by the 3D FEM simulation program of HFSS. The magnitudes of power absorptions were greatly enhanced up to 98% and broadened the absorbing frequency band over 5 GHz by the insertion of a conductive grid in magnetic composite. The initial frequency of the power absorption can controlled by the change of the ferromagnetic resonance frequencies of the magnetic composite.

Magnetic properties of high silicon steel processed by powder metallurgy (분말야금 공정에 의한 고규소강의 자성특성)

  • Yim, Tai-Hong;Chung, Hyung-Sik;Kang, Won-Koo;Chung, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.231-235
    • /
    • 1990
  • Soft magnetic silicon steels containing up to 6.5wt% of silicon were prepared by powder metallurgical processing and their magnetic properties were evaluated. The magnetic properties of P/M silicon steels are similarly affected by the silicon addition as those of conventional ingot processed ones but are also significantly affected by density and interstitial impurities particularly oxygen content. Magnetic flux density, $B_{10}$ and coercivity, Hc, tends to decrease with silicon content whereas maximum permeability, ${\mu}m$, decreases first and then increases rapidly above 5 wt% silicon. Increasing density also increases magnetic flux density and maximum permeability but reduces coereivity. The latter two properties are, however, affected more strongly with oxygen content.

  • PDF

Nondestructive Evaluation of Residual Life of 1Cr-1Mo-0.25V Steel from Reversible Magnetic Permeability

  • K.S. Ryu;S.H. Nahm;Kim, Y.I.;K.M. Yu;Kim, Y.B.;Cho, Y.;D. Son
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.27-30
    • /
    • 2001
  • We present a new procedure to evaluate the residual life of 1Cr-1Mo-0.25V steel from reversible magnetic permeability. The method is based on the existence of first harmonics in the differential magnetization around the coercive force. The apparatus is based on the detection of the voltage induced in a coil using a lock-in amplifier tuned to the frequency of the exciting coil. Results obtained for the first harmonics and Vickers hardness on aged samples show that the peak interval of reversible permeability and Vickers hardness decrease as aging time increases. The correlation between Vickers hardness and the peak interval of the reversible permeability may be used to evaluate the residual life of 1Cr-lMo-0.25V steel, nondestructively.

  • PDF

The Influence of Re2O3(RDy, Er) on the Electromagnetic Properties of Mn-Zn Ferrite (Re2O3(RDy, Er)가 Mn-Zn ferrite의 전자기적 특성에 미치는 영향)

  • 백승철;최우성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.178-183
    • /
    • 2002
  • The effects of Dy$_2$O$_3$and Er$_2$O$_3$addition on the electromagnetic properties of Mn-Zn ferrite were investigated in the doping concentration range from 0.05 wt% to 0.25 wt%. All samples were prepared by standard fabrication of ferrite ceramics. The XRD patterns of sample were observed spinel and secondary phase. The densities of sample were showed nearly constant values. As the increased additive, electrical resistivity, initial permeability and real component of the series complex permeability increased with setting limits each other. Excess doped with Dy$_2$O$_3$ and Er$_2$O$_3$, those values decreased. The maximum electrical resistivity was observed with 0.15 we% and initial permeability was observed with 0.05 wt%. Magnetic loss decreased with additive and then increased in proportion to increased.

Dependence of the physical properties for magnetic core materials on the concentrations of $Bi_2O_3$ and CaO ($Bi_2O_3$와 CaO 첨가에 따른 PLC용 자심 재료의 물성)

  • An, Y.W.;Lee, H.Y.;Kim, J.R.;Kim, H.S.;Oh, Y.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.64-67
    • /
    • 2002
  • The Physical and magnetic properties such as microstructure, permeability and power loss of Ni-Zn ferrite with composition of $Ni_{0.8}Zn_{0.2}Fe_2O_4$, were investigated as the function of $Bi_2O_3$ and CaO contents. The power loss increased in proportion to the amount of $Bi_2O_3$ up to 0.3 wt% but it decreased over than 0.3 wt% addition. The highest permeability of 134 was obtained to the specimen added 1.0 wt% $Bi_2O_3$ since $Bi_2O_3$ contents were strongly dominant to grain growth and size than that of CaO. $Bi_2O_3$ liquid phase created during sintering process promoted sintering and grain growth so that grain size and permeability increased compared to that of the specimens which were sintered with free-additive and CaO. Also, lots of pores existed in the specimen which was added $Bi_2O_3$ wt% with the biggest grain size.

  • PDF

Microwave Properties of Ba-$Co_2Z$ Ferrite with Zn addition (Zn 첨가에 따른 Ba-$Co_2Z$ 페라이트의 마이크로파 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Ryu, Ki-Won;Koh, Jung-Hyuk;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.299-299
    • /
    • 2010
  • In this study, microwave properties with compositions and frequency of the $Ba_3Co_2Fe_{24}O_{41}$ ceramics with Zn substitution for Co were investigated. From the XRD patterns, hexagonal structure of Z-type phase was existed as main phase. Diffraction peaks of Z-type phase were shifted to lower angle by Zn substituted for Co site. The permittivity was increased with Zn additions. In all composition, loss tangent of permittivities were increased with frequency. Permeability and magnetic resonance frequency were increased with Zn additions. Permeability was increased and loss tangent of permeability was decreased rapidly over 600 MHz~800 MHz. The loss tangent of permeability did not changed with composition ratio. In the case of $Ba_3Co_{1.6}Zn_{0.4}Fe_{24}O_{41}$ ceramics sintered at $1250^{\circ}C$ for 3 hours, the permittivity, loss tangent of permittivity, permeability and loss tangent of permeability were 28.277, 0.193, 22.992 and 0.065 at 310 MHz, respectively.

  • PDF

Alzheimer Dementia and Microvascular Pathology: Blood-Brain Barrier Permeability Imaging (알츠하이머 치매와 미세뇌혈관병리: 혈액뇌장벽 투과도 영상)

  • Won-Jin Moon
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.3
    • /
    • pp.488-500
    • /
    • 2020
  • Accumulating evidence suggests that Alzheimer's disease (AD) is not only caused by accumulation of abnormal proteins, including amyloid and tau, but is also closely associated with abnormalities in the microvascular environment including the blood-brain barrier (BBB), both of which lead to neuroinflammation and neurodegeneration. Application of in vivo magnetic resonance imaging (MRI) has recently increased to assess BBB permeability in AD and related diseases. Here, we provide a narrative review of BBB permeability-related pathology in Alzheimer dementia and recent MRI research on BBB permeability changes in AD and related diseases. Furthermore, we briefly introduce the measurement of BBB permeability using MRI and its methodological issues.

A Study of Magnetic Properties of 410L Stainless Steel for Manufacture of ABS Sensor Ring (410L 스테인레스 강의 ARS 센서 링 제조를 위한 자기적 특성에 관한 연구)

  • 양현수;곽창섭;임종국
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.29-39
    • /
    • 1998
  • It is well known for 410L ferritic stainless steel powder to applicate a sensor ring in anti-lock brake system of automobile, several studies, because of its excellent magnetic properties. This study was carried out In investigate the magnetic properties such as the maximum magnetic induction, coercivity and maximum permeability of the materials with functions of sintering density! time and temperature, and concluded as follows; 1. Sintering under the circumstances of hydrogen gas and tile temperature of $1250^{\circ}C$ for 60min. showed that nitrogen was increased, whereas carbon and oxygen decreased in quantities. 2. Both maximum magnetic induction value of 4700Gauss and permeability of 200 were obtained at the maximum sintering density of 6.89g/$cm^3$. Here, the properties showed a linear increasement with increasing the sintering density. 3. Coercivity sharply increased with incresing the sintering density and reached to 7.6Oe at the maximum sintering density of 6.89g/$cm^3$.

  • PDF

Ultra-Soft Magnetic Properties in Nanocrystalline $Fe_81B_11Nb_7Cu_1$Alloy

  • Lee, Heebok;Lee, Kyeong-Jae;Kim, Yong-Kook;Yoon, Sung-Ho;Kim, Taik-Kee;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.102-105
    • /
    • 2000
  • The extremely soft magnetic behaviors in the nanocrystalline $Fe_81B_11Nb_7Cu_1$ alloy annealed at 450 $\circ C$ and 550 $\circ C$ for 1 hour in a vacuum were investigated by means of the magnetoimpedance (MI) effect and the incremental permeability. Because the MI effect can be obtained only in ultra-soft magnetic materials, the improvement of magnetic softness by proper thermal treatment was carefully monitored by the MI effect for all annealed samples. The changes of the incremental permeability as a function of an external field were also measured to verify the magnetic softness along with the MI measurement.

  • PDF

Ultra-Soft Magnetic Properties in Nanocrystalline $Fe_{81}B_{11}Nb_7Cu_1$ Alloy

  • Lee, Heebok;Lee, Kyeong-Jae;Kim, Yong-Kook;Yoon, Sung-Ho;Kim, Taik-Kee;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.466-472
    • /
    • 2000
  • The extremely soft magnetic behaviors in the nanocrystalline Fe$_{81}$B$_{11}$Nb$_{7}$Cu$_{1}$ alloy annealed at 450 $^{\circ}C$ and 550 $^{\circ}C$ for 1 hour respectively in a vacuum were obtained, and examined by means of the magnetoimpedance(MI) effect and the incremental permeability. Because the MI effect can be obtained only in ultra-soft magnetic materials, the improvement of magnetic softness by proper thermal treatment was carefully monitored by the MI effect for all annealed samples. The changes of the incremental permeability as a function of an external field were also measured to verify the magnetic softness along with the MI measurement.ent.

  • PDF