• Title/Summary/Keyword: magnetic pathways

Search Result 31, Processing Time 0.031 seconds

Programmable Magnetic Actuation of Biomolecule Carriers using NiFe Stepping Stones

  • Lim, Byung-Hwa;Jeong, Il-Gyo;Anandakumar, S.;Kim, K.W.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.363-367
    • /
    • 2011
  • We have designed, fabricated and demonstrated a novel micro-system for programmable magnetic actuation using magnetic elliptical pathways on Si substrates. Lithographically patterned soft NiFe ellipses are arranged sequentially perpendicular to each other as stepping stones for the transport of magnetic beads. We have measured the magnetization curve of the ellipsoid ($9\;{\mu}m{\times}4\;{\mu}m{\times}0.1\;{\mu}m$) elements with respect to the long and short axes of the ellipse. We found that the magnetization in the long axis direction is larger than that in the short axis direction for an applied field of ${\leq}$ 1,000 Oe, causing a force on carriers that causes them to move from one element to another. We have successfully demonstrated a micro-system for the magnetic actuation of biomolecule carriers of superparamagnetic beads (Dynabead$^{(R)}$ 2.8 ${\mu}m$) by rotating the external magnetic field. This novel concept of magnetic actuation is useful for future integrated lab-on-a-chip systems for biomolecule manipulation, separation and analysis.

Manganese-Enhanced MRI Reveals Brain Circuits Associated with Olfactory Fear Conditioning by Nasal Delivery of Manganese

  • Yang, Ji-ung;Chang, Yongmin;Lee, Taekwan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2022
  • Purpose: The survival of organisms critically depends on avoidance responses to life-threatening stimuli. Information about dangerous situations needs to be remembered to produce defensive behavior. To investigate underlying brain regions to process information of danger, manganese-enhanced MRI (MEMRI) was used in olfactory fear-conditioned rats. Materials and Methods: Fear conditioning was conducted in male Sprague-Dawley rats. The animals received nasal injections of manganese chloride solution to monitor brain activation for olfactory information processing. Twenty-four hours after manganese injection, rats were exposed to electric foot shocks with odor cue for one hour. Control rats were exposed to the same odor cue without foot shocks. Forty-eight hours after the conditioning, rats were anesthetized and their brains were scanned with 9.4T MRI. Acquired images were processed and statistical analyses were performed using AFNI. Results: Manganese injection enhanced brain areas involved in olfactory information pathways in T1 weighted images. Rats that received foot shocks showed higher brain activation in the central nucleus of the amygdala, septum, primary motor cortex, and preoptic area. In contrast, control rats displayed greater signals in the orbital cortex and nucleus accumbens. Conclusion: Nasal delivery of manganese solution enhanced olfactory signal pathways in rats. Odor cue paired with foot shocks activated amygdala, the central brain region in fear, and related brain circuits. Use of MEMRI in fear conditioning provides a reliable monitoring technique of brain activation for fear learning.

EVALUATION OF CLINICAL METHODS IN THE DIAGNOSIS OF TEMPOROMANDIBULAR JOINT DISORDERS: A COMPARISON STUDY WITH MAGNETIC RESONANCE IMAGING (측두하악관절 장애에 대한 임상진단의 유효성 연구)

  • Kim, Hyung-Wook;Shin, Sung-Soo;Kim, Jong-Sik;Kim, Ki-Young;Kim, Yoon-Ji;Hong, Soon-Min;Cheon, Se-Hwan;Park, Yang-Ho;Choi, Won-Cheul;Park, Jun-Woo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.367-374
    • /
    • 2007
  • Purpose: The diagnostic relevancies and characteristics and of clinical methods in the diagnosis of internal derangement(ID) were tested by comparing the results of them with those of magnetic resonance imaging(MRI). Methods: 75 patients(150 temporomandibular joints; TMJs), who were suspected to have ID by clinical diagnoses, were included. Clinical diagnoses including mouth opening pathway and TMJ sound were conducted and MRI takings were done. Accuracies, sensitivities, specificities, positive predictive values, and negative predictive values of clinical diagnosis, mouth opening pathway, and TMJ sound were calculated by comparing with diagnoses with MRIs. Results: Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of clinical diagnosis were 59.3%, 83%, 49%, 81%, and 51%. They were 59%, 82%, 25%, 73%, and 35% for mouth opening pathways. Although deviation was somewhat accurate for representing disc displacement with reduction(ADDWR), other discrepancies on opening pathways were not clinically relevant. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of clicking sounds were 85%, 49%, 78%, 85%, and 37%. TMJs with crepitus were only three. But all TMJs with crepitus were diagnosed to have disc displacement without reduction(ADDWOR). Conclusion: When compared with diagnoses with MRIs, clinical diagnoses for ID were not so accurate. But they were suitable for screening tests for ID. Opening pathways and TMJ sounds were not so relevant in the diagnoses of IDs and so it was concluded that considerations for other factors must be included in the diagnoses of IDs.

Applications of NMR spectroscopy based metabolomics: a review

  • Yoon, Dahye;Lee, Minji;Kim, Siwon;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Metabolomics is the study which detects the changes of metabolites level. Metabolomics is a terminal view of the biological system. The end products of the metabolism, metabolites, reflect the responses to external environment. Therefore metabolomics gives the additional information about understanding the metabolic pathways. These metabolites can be used as biomarkers that indicate the disease or external stresses such as exposure to toxicant. Many kinds of biological samples are used in metabolomics, for example, cell, tissue, and bio fluids. NMR spectroscopy is one of the tools of metabolomics. NMR data are analyzed by multivariate statistical analysis and target profiling technique. Recently, NMR-based metabolomics is a growing field in various studies such as disease diagnosis, forensic science, and toxicity assessment.

Combined BOLD fMRI and Transcranial Magnetic Stimulation Study: Evaluation of Ipsilateral Motor Pathway of Stroke Patients

  • 배성진;장용민;장성호;변우목;강덕식
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.104-104
    • /
    • 2001
  • Purpose: In this study, we investigated the possible motor pathways of hemiplegic stroke patients usin combined TMS and BOLD fMRI approach and evaluated the correlation between TMS a fMRI methods. Method: Four subjects, who demonstrated left hemiplegia after stroke, are included. TMS was performed using a Dantec Mag2 stimulator (Dantec Company, USA) in single puls mode with figure eight-shaped coil. Following TMS localization, The BOLD T2*-weight images were acquired with echo planar imaging sequence (TR = 1.2 sec, TE = 60 msec, and flip angle = 90). Motor activation was studied by means of a repetitive fing flexion-extension task. The stimulation protocol comprised 10 cycles of alternating activati and rest (10 images per cycle). Total 60 cycles were performed and each cycle take abou 1.5 sec. The resulting images were then analyzed with STIMULATE (CMRR, U, o Minnesota) to generate functional maps using a student t-test (p < 0.0005) and cluste analysis.

  • PDF

The Suppressing of MR Image Artifacts using Phases Cycling in Fast SE Sequence

  • Shin, Yong-Jin;Jeong, Gwang-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.59-65
    • /
    • 1998
  • The correction of image artifacts due to misadjustment in tuning of RF coils (tip angle) and in the RF single sideband spectrometer was investigated using phase cycling of the $\pi$/2 and $\pi$ pulses in spin-echo sequences. A general procedure was developed for the systematic design of phase cycles that select desirable coherence transfer pathways. To analyze a phase cycling sequence, changes in the coherence level and phase factor for each RF pulse in the spin-echo cycle must be determined. Four different phase cycling schemes (FIXED, ALTERNATE, FORWARD, REVERSED) to suppress unwanted signal components such as mirror and ghost images were evaluated using two signal acquisitions. When the receiver phase factor is cycled counter-clockwise (REVERSED), these artifacts are completely removed.

  • PDF

Metabolic profiling study of ketoprofen-induced toxicity using 1H NMR spectroscopy coupled with multivariate analysis

  • Jung, Jee-Youn;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.54-68
    • /
    • 2011
  • $^1H$ nuclear magnetic resonance (NMR) spectroscopy of biological samples has been proven to be an effective and nondestructive approach to probe drug toxicity within an organism. In this study, ketoprofen toxicity was investigated using $^1H$-NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic test of ketoprofen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) derived from $^1H$-NMR spectra of urinary samples showed clear separation between the vehicle-treated control and ketoprofen-treated groups. Moreover, PCA derived from endogenous metabolite concentrations through targeted profiling revealed a dose-dependent metabolic shift between the vehicle-treated control, low-dose ketoprofen-treated (10 mg/kg body weight), and high-dose ketoprofen-treated (50 mg/kg) groups coinciding with their gastric damage scores after ketoprofen administration. The resultant metabolic profiles demonstrated that the ketoprofen-induced gastric damage exhibited energy metabolism perturbations that increased urinary levels of citrate, cis-aconitate, succinate, and phosphocreatine. In addition, ketoprofen administration induced an enhancement of xenobiotic activity in fatty oxidation, which caused increase levels of N-isovalerylglycine, adipate, phenylacetylglycine, dimethylamine, betaine, hippurate, 3-indoxylsulfate, N,N-dimethylglycine, trimethyl-N-oxide, and glycine. These findings demonstrate that $^1H$-NMR-based urinary metabolic profiling can be used for noninvasive and rapid way to diagnose adverse drug effects and is suitable for explaining the possible biological pathways perturbed by nonsteroidal anti-inflammatory drug toxicity.

Correlation analysis of human urinary metabolites related to gender and obesity using NMR-based metabolic profiling

  • Kim, Ja-Han;Park, Jung-Dae;Park, Sung-Soo;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.46-66
    • /
    • 2012
  • Metabolomic studies using human urine have shown that human metabolism is altered by a variety of environmental, cultural, and physiological factors. Comprehensive information about normal human metabolite profiles is necessary for accurate clinical diagnosis of disease and for disease prevention and treatment. In this study, metabolite correlation analyses, using $^1H$ nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistics, were performed on human urine to compare metabolic differences based on gender and/or obesity in healthy human subjects. First, we applied partial least squares discriminant analysis to the NMR spectral data set to verify the data's ability to discriminate by gender and obesity. Then, the differences in metabolite-metabolite correlation between male and female, and between normal and high body mass index (obese) subjects were investigated through pairwise correlations. Creatine and several metabolites, including isoleucine, trans-aconitate, and trimethylamine N-oxide (TMAO), exhibited different quantitative relationships depending on gender. Dimethylamine had a different correlation with glycine and TMAO, based on gender. The correlation of TMAO with amino acids was considerably lower in obese, compared to normal, subjects. We expect that the results will shed light on the metabolic pathways of healthy humans and will assist in the accurate diagnosis of human disease.

Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells

  • Kim, Eun-Cheol;Park, Jaesuh;Kwon, Il Keun;Lee, Suk-Won;Park, Su-Jung;Ahn, Su-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.5
    • /
    • pp.273-291
    • /
    • 2017
  • Purpose: Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. Methods: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. Results: The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$) and total ${\beta}-catenin$ protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) pathways were activated. Conclusions: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.