• 제목/요약/키워드: magnetic parameter

검색결과 592건 처리시간 0.026초

Methods for Determining the Quality of Magnetic Fluids

  • Chioran, Viorica;Chioran, Marius
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.197-201
    • /
    • 2013
  • This paper presents the conversion parameter values of the magnetic properties of magnetic fluids. These values were determined for three magnetic fluid samples containing particles with diameters between 30 ${\AA}$ and 170 ${\AA}$. The factors that may affect the value of this parameter (size of particle, magnetic properties, the presence of clusters and aggregates) are also studied. The determined values for the conversion parameter (${\gamma}$) are between 0.25 and 0.76 and the determined limit value is 0.8. Because many applications require magnetic fluids with the saturation magnetization as high as possible and the viscosity as low as possible [1], it has been considered necessary to determine this parameter which describes the quality of magnetic fluids.

평행평판사이의 입구길이영역에서 자성유체의 유동해석 (Flow Analysis of Magnetic Fluid in Inlet Length Region between Parallel Plates)

  • 박정우;박기태;김유준;서이수
    • 한국유체기계학회 논문집
    • /
    • 제11권2호
    • /
    • pp.7-12
    • /
    • 2008
  • It is attempted, in this study, to analyze the movement of the fluidity of polar magnetic fluid and to relate Newtonian fluid with the Inlet Length of infinity plates when distance between parallel plates is L. A numerical analysis is performed for the variation of inlet length when magnetic effect parameter and polar effect parameter which give special advantages to magnetic fluid are increased. From the result of numerical analysis, we confirmed that the inlet length shortens as the flux around the center axis is accelerated and the flux around the surface of a wall is controlled as the magnetic effect parameter and the polar effect parameter are increased.

수직자장하에서 원관내 자성유체의 거동에 관한 연구 (A Study on the Flow Behavior of Magnetic Fluids in a Circular Pipe with a Vertical Magnetic Field)

  • 박정우;유신오;서이수
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.25-32
    • /
    • 1999
  • In the present paper, we theoretically analyze the flow of magnetic fluids in a circular pipe with a vertical magnetic field and investigate the magnetic response by the external magnetic field. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the Gauss Elimination Method. Using polar and magnetic effect parameters, theoretical equations and distributions for the velocity, vorticity, internal angular momentum and induced magnetization as the magnetic response are shown. Especially, in the region of strong magnetic field the specific property is appeared by finding a critical magnetic effect parameter for a polar effect parameter.

원관내 자성유체의 Rheology 특성에 관한 연구 (A Study on the Rheology Characteristics of Magnetic Fluids in a Circular Pipe)

  • 전언찬;박정우;김태호;김수용
    • 한국기계가공학회지
    • /
    • 제7권2호
    • /
    • pp.38-44
    • /
    • 2008
  • In the present paper, we theoretically analyze the flow of magnetic fluids in a circular pipe with a vertical magnetic field and investigate the magnetic response by the external magnetic field. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the Gauss Elimination Method. Using polar and magnetic effect parameters, theoretical equations and distributions for the velocity, apparent viscosity as the magnetic response are shown. Especially, in the region of strong magnetic field the specific property is appeared by finding a critical magnetic effect parameter for a polar effect parameter.

  • PDF

Design and behavior of two profiles for structural performance of composite structure: A fluid interaction

  • Thobiani, Faisal Al;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ghandourah, Emad;Alhawsawi, Abdulsalam;Alshoaibi, Adil
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.221-228
    • /
    • 2022
  • Two-dimensional stagnation point slip flow of a Casson fluid impinging normally on a flat linearly shrinking surface is considered. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations.The flow is assumed to be steady and incompressible, with external magnetic field acting on it. Similarity transformation is utilized to investigate the behavior of many parameters for heat and velocity distributions using truncation approach.The influence of buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. The effect of the magnetic parameter on the streamwise velocity profile is also investigated.

반응표면법을 이용한 솔레노이드형 자기액추에이터의 치수 최적화 설계 (Parameter design optimization of solenoid type magnetic actuator using response surface methodology)

  • 소현준;유정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.579-584
    • /
    • 2003
  • Solenoid type magnetic actuator is the device, which could translate the electromagnetic energy to mechanical force. The force generated by magnetic flux, could be calculated by Maxwell stress tensor method. Maxwell stress tensor method is influenced by the magnetic flux path. Thus, magnetic force could be improved by modification of the iron case, which is the route of the magnetic flux. Modified design is obtained by parameter optimization using by Response surface methodology.

  • PDF

선형행렬부등식 기법을 이용한 횡축형 자기 베어링 시스템의 로버스트 제어 (A Robust Control of Horizontal-Shaft Magnetic Bearing System Using Linear Matrix Inequality Technique)

  • 김창화;정병건;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.321-330
    • /
    • 2001
  • Magnetic bearing system is frequently used for high-speed rotating machines because of its frictionless property. But the magnetic bearing system needs feedback controller for stabilization. This paper presents a robust controller design by using linear matrix inequality for magnetic bearing system which shows the control performance and robust stability under the physical parameter perturbations. To the end, the validity of the designed controller is investigated through computer simulation.

  • PDF

Hall and Ion-Slip effects on magneto-micropolar fluid with combined forced and free convection in boundary layer flow over a horizontal plate

  • Seddeek, M.A.;Abdelmeguid, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제8권2호
    • /
    • pp.51-73
    • /
    • 2004
  • A boundary layer analysis is used to study the effects of Hall and ion-slip currents on the steady magneto-micropolar of a viscous incompressible and electrically conducting fluid over a horizontal plate. By means of similarity solutions, deviation of fundamental equations on the assumption of small magnetic Reynolds number are solved numerically by using the shooting method. The effects of various parameters of the problem, e.g. the magnetic parameter, Hall parameter, ion-slip parameter, buoyancy parameter and material parameter are discussed and shown graphically.

  • PDF

MHD Boundary Layer Flow and Heat Transfer of Rotating Dusty Nanofluid over a Stretching Surface

  • Manghat, Radhika;Siddabasappa, Siddabasappa
    • Kyungpook Mathematical Journal
    • /
    • 제60권4호
    • /
    • pp.853-867
    • /
    • 2020
  • The aim of this study was to analyze the momentum and heat transfer of a rotating nanofluid with conducting spherical dust particles. The fluid flows over a stretching surface under the influence of an external magnetic field. By applying similarity transformations, the governing partial differential equations were trans-formed into nonlinear coupled ordinary differential equations. These equations were solved with the built-in function bvp4c in MATLAB. Moreover, the effects of the rotation parameter ω, magnetic field parameter M, mass concentration of the dust particles α, and volume fraction of the nano particles 𝜙, on the velocity and temperature profiles of the fluid and dust particles were considered. The results agree well with those in published papers. According to the result the hikes in the rotation parameter ω decrease the local Nusselt number, and the increasing volume fraction of the nano particles 𝜙 increases the local Nusselt number. Moreover the friction factor along the x and y axes increases with increasing volume fraction of the nano particles 𝜙.

Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1201-1214
    • /
    • 2015
  • This paper introduces the combined effect of electric field, magnetic field and thermal field on edge wave propagating in a homogeneous isotropic prestressed plate of finite thickness and infinite length. The dispersion relation of edge wave has been obtained by using classical dynamical theory of thermoelasticity. The phase velocity has been computed and shown graphically for various initial stress parameter, electro-magneto parameter, electric parameter and thermoelastic coupling parameter.