• Title/Summary/Keyword: magnetic nano-particles

Search Result 107, Processing Time 0.029 seconds

MHD Boundary Layer Flow and Heat Transfer of Rotating Dusty Nanofluid over a Stretching Surface

  • Manghat, Radhika;Siddabasappa, Siddabasappa
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.853-867
    • /
    • 2020
  • The aim of this study was to analyze the momentum and heat transfer of a rotating nanofluid with conducting spherical dust particles. The fluid flows over a stretching surface under the influence of an external magnetic field. By applying similarity transformations, the governing partial differential equations were trans-formed into nonlinear coupled ordinary differential equations. These equations were solved with the built-in function bvp4c in MATLAB. Moreover, the effects of the rotation parameter ω, magnetic field parameter M, mass concentration of the dust particles α, and volume fraction of the nano particles 𝜙, on the velocity and temperature profiles of the fluid and dust particles were considered. The results agree well with those in published papers. According to the result the hikes in the rotation parameter ω decrease the local Nusselt number, and the increasing volume fraction of the nano particles 𝜙 increases the local Nusselt number. Moreover the friction factor along the x and y axes increases with increasing volume fraction of the nano particles 𝜙.

Crystallographic and Magnetic Properties of Iron Oxide Nanoparticles for Applications in Biomedicine

  • Lee, Sang-Won;Woo, Kyoung-Ja;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.9 no.3
    • /
    • pp.83-85
    • /
    • 2004
  • Magnetic nanoparticles have been investigated for use as biomedical purposes for several years. For biomedical applications the use of particles that present superparamagnetic behavior at room temperature is preferred [1-4]. To control the magnetic materials by magnetic field is essential locate particle to the suitable destination on feeding by injection. In order to use them properly, the particles should be nano size. However there are many difficulties in applications, because there is lack of identifications in nano magnetic properties. In our studies, structural and magnetic properties of iron oxide nanoparticles were investigated by XRD, VSM, TEM, and Mossbauer spectroscopy. At 13 K, hyperfine fields of ${\gamma}-Fe_2O_3$ were 516 kOe and 490 kOe, that of $Fe_3O_4$ were 517 kOe and 482 kOe. The saturation magnetizations were 21.42 emu/g and 39.42 emu/g. The particle size of powders is 5~19 nm.

Magnetic Behaviors of Isolated Fe-Co-Ni Nanoparticles in a Random Arrangement

  • Yang, Choong Jin;Kim, Kyung Soo;Wu, Jianmin
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.94-100
    • /
    • 2001
  • Fe-Co-Ni particles with an average size of 45 and 135 nm are characterized in terms of magnetic phase transformation and magnetic properties at room temperature. BCC structure of Fe-Co-Ni spherical particles can be synthesized from Fe-Co-Ni-Al-Cu precursor films by heating at 600-80$0^{\circ}C$ for the phase separation of Fe-Co rich Fe-Co-Ni particles, followed by a post heating at $600^{\circ}C$ for 5 hours. The average size of nanoparticles was directly determined by the thickness of precursor films. Exchange interactive hysteresis was observed for the nano-composite (Fe-Co-Ni)+(Fe-Ni-Al) films resulting from the short exchange interface between ferromagnetic Fe-Co-Ni particles surrounded by almost papramagnetic Ni-Al-Fe matrix. Arraying the isolated Fe-Co-Ni nano-particles in a random arrangement on $Al_2O_3$substrate the particle assembly showed a behavior of dipole interactive ferromagnetic clusters depending on their volume and inter-particle distance.

  • PDF

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.

Improvement of Boar Semen Quality by Sperm Selection Using Magnetic Nano-particles (마그네틱 나노비드를 이용한 돼지 정자 품질의 향상)

  • Chung, KI-Hwa;Son, Jung-Ho
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.943-947
    • /
    • 2016
  • The objective of this study was to see if fairly simple magnetic nano-particle treatment enhances boar semen qualities. Boar semen samples were prepared from the swine AI center and samples were divided by 4 different motility groups (1, >90%; 2. 80~90%; 3. 70~80%; 4. <70%) using computer assisted sperm analysis (CASA) evaluation. Boar semen was extended using BTS extender and same number of magnetic nano-particles as total number of spermatozoa in each sample was treated for 20 min and collected for 5 min at room temperature. Sperm qualities such as motility and viability were evaluated by the CASA before and after treatment. Sperm abnormality and degree of agglutination were also evaluated under the microscopic examination before and after treatment. There were significant changes (p<0.05) on sperm motility from all 4 different groups in the average of 7.11% after treatment. The enhancement of sperm motility changes was more clear in the groups of lower sperm motile groups (<70% and 70~80%; 19.12±1.08% and 5.67±0.71%, p<0.05). The sperm motility character in terms of curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP) and linearity (LIN, %) showed also similar pattern but motility enhancement wear more clear in below 70% motile group. Average sperm viability was increased to 4% by magnetic nano-particles (p<0.05). The percentage of sperm abnormality was also reduced significantly (p<0.05) to the range of 3.7~4.5% before after treatment. The degree of sperm agglutination was also reduced in lower motility groups by the magnetic nano-particle purification.

In-situ Patterning of Magnetic Particles in Microfluidic Channels by Forward/Reverse Local Magnet Arrangement (국소 자기장의 순/역 배열을 이용한 미세유체 채널 내에서의 강자성 입자 패턴 형성)

  • Park, Hyoun-Hyang;Lee, Ji Hae;Yoo, Yeong Eun;Kim, Jung-Yup;Chang, Sunghwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • The patterning of microbead in microfluidics channel is a practical technique for application in bio and medical areas. An approach is described for a direct patterning of magnetically active microbeads in microfluidic devices without inner structure. Local magnet arrangements - flat arrangement and stack arrangement - contacting same poles or opposite poles of magnet were utilized for generating trapping magnetic fields. The arrangement of magnets contacting same poles generated isolated patterns by repelling of magnetic field. The flat arrangement of vertically reverse magnet arrays shaped trapping patterns repelling magnetic field line between same poles. Spatially, the stack compositions of magnet arrangements allow diverse isolated trapped patterns of magnetic particles. Trapped magnetic particles in fluidic channels were stable on the $18m{\ell}/hr$ flow conditions and magnetic force of 1.08 mT in the all experiments. This experimental study suggests the simple and versatile methods to pattern magnetic particles, and has potential of wide application to bio and medical area.

Magnetic Properties of Amorphous FeSiB and Nanocrystalline $Fe_{73}Si_{16}B_7Nb_3Cu_1$ Soft Magnetic Sheets

  • Cho, H.J.;Cho, E.K.;Song, Y.S.;Kwon, S.K.;Sohn, K.Y.;Park, W.W.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.786-787
    • /
    • 2006
  • The magnetic inductance of nanocrystalline $Fe_{73}Si_{16}B_7Nb_3Cu_1$ and an amorphous FeSiB powder sheet has been investigated to identify RFID performance. The powder was mixed with binder and solvent and tape-casted to form films. Results show annealing significantly influenced on the inductance of the material. The surface oxidation of the particles was the main reason for the reduced inductance. The maximum inductance of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy was about $88{\mu}H$ at 17.4 MHz, about 65% greater compared to the FeSiB alloy. The higher inductance in the nanocrystalline alloy indicates it may be used as a potential replacement of current RFID materials.

  • PDF

Effect of Carrier Gas on the Microstructure and Magnetic Properties of Co Nanoparticles Synthesized by Chemical Vapor Condensation (화학기상응축공정(Chemical Vapor Condensation)으로 제조된 Co 나노분말의 미세구조 및 자기적 성질에 미치는 운송기체의 영향)

  • ;X. L. Dong
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • The nano-sized Co particles were successfully synthesized by chemical vapor condensation (CVC) process using the precursor of cobalt carbonyl ($Co_2(CO)_8$). The influence of carrier gases on the microstructure and magnetic properties of nanoparticles was investigated by means of XRD, TEM, XPS and VSM. The Co nano-particles with different phases and shapes were synthesized with a change of carrier gas : long string morphologies with coexistence of fcc and hcp structure in Ar carrier gas condition; finer Co core in a mass of cobalt oxide with only fcc structure in He; rod type cobalt oxide phase in Ar+6vol%$O_2$. The saturation magnetization and coercivity was lower in Co nanoparticles synthesized in He carrier gas, due to their finer size.