• 제목/요약/키워드: magnetic measurement

검색결과 1,256건 처리시간 0.043초

구동중인 자동차 배기계의 진동 특성 측정 (Vibration Measurement of an Automobile Exhaust System in Operation)

  • 김성국;이종남;한순우;정태진;이신영;장강원
    • 한국소음진동공학회논문집
    • /
    • 제17권3호
    • /
    • pp.235-240
    • /
    • 2007
  • In this work, the operational deflection shape(ODS) of an automobile exhaust system is measured by using a recently-developed magnetic sensor. The magnetic sensor is composed of a solenoid and two pairs of permanent magnets generating an antisymmetric magnetic field in the lateral direction inside the solenoid. Lateral movement of a ferromagnetic pipe inside the magnetic field of the suggested sensor induces an electromotive force in the solenoid corresponding to the lateral velocity of the pipe. Due to the simplicity and non-contact characteristics of the magnetic sensor, dynamic behaviors of the structures operating under high temperature such as an exhaust pipe can be efficiently observed. It is shown that the lateral ODS of an exhaust system can be successfully measured by the suggested sensors.

Constraint-Combined Adaptive Complementary Filter for Accurate Yaw Estimation in Magnetically Disturbed Environments

  • Jung, Woo Chang;Lee, Jung Keun
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.81-87
    • /
    • 2019
  • One of the major issues in inertial and magnetic measurement unit (IMMU)-based 3D orientation estimation is compensation for magnetic disturbances in magnetometer signals, as the magnetic disturbance is a major cause of inaccurate yaw estimation. In the proposed approach, a kinematic constraint is used to provide a measurement equation in addition to the accelerometer and magnetometer signals to mitigate the disturbance effect on the orientation estimation. Although a Kalman filter (KF) is the most popular framework for IMMU-based orientation estimation, a complementary filter (CF) has its own advantages over KF in terms of mathematical simplicity and ease of implementation. Accordingly, this paper introduces a quaternion-based CF with a constraint-combined correction equation. Furthermore, the weight of the constraint relative to the magnetometer signal is adjusted to adapt to magnetic environments to optimally deal with the magnetic disturbance. In the results of our validation experiments, the average and maximum of yaw errors were $1.17^{\circ}$ and $1.65^{\circ}$ from the proposed CF, respectively, and $8.88^{\circ}$ and $14.73^{\circ}$ from the conventional CF, respectively, showing the superiority of the proposed approach.

방위각센서의 자기특성 측정 장치 제작 (Construction of Measuring System for Magnetic Properties Measurement of Azimuth Angle Sensor)

  • 손대락
    • 한국자기학회지
    • /
    • 제24권1호
    • /
    • pp.22-27
    • /
    • 2014
  • 자북을 지시하는 방위각 측정용 센서는 항공기와 선박이나 스마트폰 등에 널리 사용되고 있다. 센서의 좌표계가 회전을 하였을 경우도 방위각(azimuth angle) 및 회전각(roll angle)를 지시할 수 있게 하기위하여 3-축의 가속도 센서가 추가로 사용된다. 본 연구에서는 방위각센서에 부착된 3-축의 자기장센서의 특성을 측정하거나, 방위각센서용 3-축의 자기장센서를 개발하기 위하여 3-축의 자기장센서의 방위각 특성을 측정할 수 있는 장치를 개발 제작하였다. 3-축의 자기장발생을 위해서 직경이 290 mm 이상인 3-축의 헬름홀쯔 코일을 사용하여 코일 중심 ${\pm}30mm$ 범위에서 자기장의 분포의 균일도가 0.2 % 이내가 되게 하였다. 비자성실험실이 아닌 일반실험실에서도 실험이 가능하게 소형의 헬름홀쯔 코일과 3-축의 마그네토미터를 사용, 환경자기장(지구자기장+건축물에 의한 자기장)을 보상하고 시험하고자하는 자기장을 컴퓨터 소프트웨어로 제어를 할 수 있게 시험 장치를 고안하였다. 제작된 장치는 자기장을 0.2 % 정확도로, 직각도를 $0.2^{\circ}$, 환경자기장을 10 nT 이하로 보상할 수 있었다. 또한 제작된 장치의 성능검증을 위하여 상용의 방위각센서에 대하여, 그 특성을 측정하여보았다.

Orientation and thickness dependence of magnetic levitation force and trapped magnetic field of single grain YBa2Cu3O7-y bulk superconductors

  • Jung, Y.;Go, S.J.;Joo, H.T.;Lee, Y.J.;Park, S.D.;Jun, B.H.;Kim, C.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.30-35
    • /
    • 2017
  • The effects of the crystallographic orientation and sample thickness on the magnetic levitation forces (F) and trapped magnetic field (B) of single grain YBCO bulk superconductors were examined. Single grain YBCO samples with a (001), (110) or (100) surface were used as the test samples. The samples used for the force-distance (F-d) measurement were cooled at 77 K without a magnetic field (zero field cooling, ZFC), whereas the samples used for the B measurement were cooled under the external magnetic field of a Nd-B-Fe permanent magnet (field cooling, FC). It was found that F and B of the (001) surface were higher than those of the (110) or (100) surface, which is attributed to the higher critical current density ($J_c$) of the (001) surface. For the (001) samples with t=5-18 mm, the maximum magnetic levitation forces ($F_{max}s$) of the ZFC samples were larger than 40 N. About 80% of the applied magnetic field was trapped in the FC samples. However, the F and B decreased rapidly as t decreased below 5 mm. There exists a critical sample thickness (t=5 mm for the experimental condition of this study) for maintaining the large levitation/trapping properties, which is dependent on the material properties and magnitude of the external magnetic fields.

Dual Rotor 풍력발전을 이용한 선박에서의 효과적인 풍향 풍속 측정 (Efficient Measurement of Wind Velocity and Direction Using Dual Rotor Wind Power Generator in Vessel)

  • 최원연;박계도;이장명
    • 로봇학회논문지
    • /
    • 제5권4호
    • /
    • pp.309-317
    • /
    • 2010
  • This paper proposes an efficient measurement system for the velocity and direction of the wind using the dual rotor wind power generator in vessel. Conventional digital measurement system recognizes the direction and the velocity of the wind using the electric compass or synchronous motor and Vane probe method using hall sensors. But each system has its own short-comings: the synchronous motor has a larger measurement error than the magnetic compass and magnetic compass is weak for the external disturbances such as fluctuation of the vessel. To compensate these short-comings, this paper proposes a new compensation algorithm for the fluctuation errors according to the external interference and the unexpected movement of the vessel along the roll and pitch directions. The proposed system is implemented with the dual compasses and a synchronous motor. The proposed independent power generation system can be operated by itself and can raise the efficiency of the wind power generation systems of 30 ~ 400 W installed along the vertical and horizontal axes. The proposed system also realizes the efficient and reliable power production system by the MPPT algorithm for the real-time recognition of the wind direction and velocity. An advanced switching algorithm for the battery charging system has been also proposed. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

자기연마법을 응용한 미세금형부품의 초정밀 연마 (Ultra Precision Polishing of Micro Die and Mold Parts using Magnetic-assisted Machining)

  • 안병운;김욱배;박성준;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1832-1835
    • /
    • 2003
  • This paper suggests the selective ultra precision polishing techniques for micro die and mold parts using magnetic-assisted machining. Fabrication of magnetic abrasive particle and their polishing performance are key technology at ultra precision polishing process of micro parts. Conventional magnetic abrasives have disadvantages. which are missing of abrasive particle and inequality between magnetic particle and abrasive particle. So, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Ferrite and carbonyl iron powder are used as magnetic particle where silicon carbide and Al$_2$O$_3$ are abrasive particle. Developed particles are analyzed using measurement device such as SEM. Possibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 2.927 $\mu\textrm{m}$ Rmax to 0.453 $\mu\textrm{m}$ Rmax.

  • PDF

전기강판의 회전자계 하에서의 2차원 자계특성 측정 (Measurement of Two Dimensional Magnetic Properties of Electrical Steel Sheets under Rotating Magnetic Fields)

  • 음영환;홍선기;신판석;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.617-622
    • /
    • 2006
  • It is necessary to measure precisely the magnetic characteristics of electrical steel sheets under rotating magnetic fields, to obtain an accurate numerical performance analysis of electric machines made of electrical steel sheets. In this paper, the two dimensional magnetic characteristics of an electrical steel sheet are measured and explained under rotating magnetic fields using a two-axes-excitation type single sheet tester (SST). Through experiments, the magnetic properties, under rotating magnetic fields, of a non-oriented and grain oriented electrical steel sheet were measured respectively. In addition, the iron losses due to not only the alternating magnetic fields, but also rotating magnetic fields were measured. These experimentally measured results can evidently be applied to the analysis of iron losses in electrical machines.

Study on magnetic field mapping within cylindrical center volume of general magnet

  • Huang, Li;Lee, Sangjin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.30-36
    • /
    • 2016
  • For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.