• Title/Summary/Keyword: magnetic impact

Search Result 221, Processing Time 0.022 seconds

Improvement of Magnetic Impact Actuator for Capsule Type Moving Device (캡슐형 구동기구를 위한 자기 충격 액추에이터의 개선)

  • 민현진;곽윤근;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.652-655
    • /
    • 2003
  • This paper is about the recent development of the magnetic impact actuator for endoscope. The developed magnetic impact actuator has many problems to arrange in the system body. Because the magnetic impact actuator need a permanent magnet as an impacter, so the magnetic interference among magnets can not be eliminated. This interference causes the system size bigger. We need a new actuator design to solve these problems. One of the good solutions is to use the closed electro-magnetic circuit. This kind of circuit enhances the actuators to be independent. It is written about the design of the electro-magnetic circuit and simulation using Maxwell(version 9.0)

  • PDF

Study for Exposure Limits of Magnetic Fields in the Transformer Substation (변전소 건설로 인한 자기장 노출범위설정에 관한 연구)

  • Jeon, In-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.195-202
    • /
    • 2005
  • The health risks from the magnetic fields exposure have been brought out difficulties in the construction of transformer substation. According to several epidemiologic studies and the relevant international organizations, magnetic fields should not exceed the exposure limits of 3mG for the people living near electric power lines. The rigid regulation of the exposure levels for the elementary school and residental areas has been established already in Switzerland and Italy. Since 1998, the environmental impact assessment system in Korea has been reviewed for power-frequency magnetic field by precautionary policies. In this study, the possible application of Prior Environmental Performance Review System for the transformer substation was reviewed from the points of the properties of the powerfrequency magnetic fields. The ranges and survey methods of the assessment for the transformer substation were proposed. The ranges of magnetic fields was between 300m to 500m for the 345kV transformer substation. It is necessary to develop further specific assessment methods for various high-voltage transformer substations.

Impact of 0.35 T Magnetic Field on Dose Calculation for Non-small Cell Lung Cancer Stereotactic Radiotherapy Plans

  • Jaeman Son;Sung Young Lee;Chang Heon Choi;Jong Min Park;Jung-in Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • Background: We investigated the impact of 0.35 T magnetic field on dose calculation for non-small cell lung cancer (NSCLC) stereotactic ablative radiotherapy (SABR) in the ViewRay system (ViewRay Inc.), which features a simultaneous use of magnetic resonance imaging (MRI) to guide radiotherapy for an improved targeting of tumors. Materials and Methods: Here, we present a comprehensive analysis of the effects induced by the 0.35 T magnetic field on various characteristics of SABR plans including the plan qualities and dose calculation for the planning target volume, organs at risk, and outer/inner shells. Therefore, two SABR plans were set up, one with a 0.35 T magnetic field applied during radiotherapy and another in the absence of the field. The dosimetric parameters were calculated in both cases, and the plan quality indices were evaluated using a Monte Carlo algorithm based on a treatment planning system. Results and Discussion: Our findings showed no significant impact on dose calculation under the 0.35 T magnetic field for all analyzed parameters. Nonetheless, a significant enhancement in the dose was calculated on the skin surrounding the tumor when the 0.35 T magnetic field was applied during the radiotherapy. This was attributed to the electron return effect, which results from the deviation of the electrons ejected from tissues upon radiation due to Lorentz forces. These returned electrons re-enter the tissues, causing a local dose increase in the calculated dose. Conclusion: The present study highlights the impact of the 0.35 T magnetic field used for MRI in the ViewRay system for NSCLC SABR treatment, especially on the skin surrounding the tumors.

Performance Tests of an Induction Motor with Hexahedron HTS Bulk Bearing (고온초전도 벌크 베어링을 사용한 유도 전동기의 특성 시험)

  • 임형우;이광윤;박명진;차귀수;이지광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.286-290
    • /
    • 2003
  • The high temperature superconducting bulk can be used as the bearing of induction motors. This paper presents the fabrication and test results of an induction motor with superconducting bearings using HTS bulks. The bearing had eight hexahedron type YBCO bulks. Height, width and thickness of the HTS bulk were 30mm, 30mm and 10mm, respectively. Single phase induction motor was used to drive the shaft made of aluminum and the rotor of a conventional induction motor. To estimate the performance of the HTS bulk magnetic bearing, no load test, load test and Impact test were carried out. Load tests were performed by using air resistance caused by the shaft-mounted thin cylinder with buckets. Impact tests by axial direction and vertical direction impact showed that the vibration of the shaft gradually decayed. The induction motor with HTS bulk magnetic bearing rotated silently and smoothly throughout the tests. According to the test results, conventional bearings can be replaced with superconducting magnetic bearings made of HTS bulks.

Analysis of Impact Responses Considering Sensor Dynamics (센서 동역학을 고려한 충격응답해석)

  • Ryu, B.J.;Kwon, B.H.;Ahn, K.Y.;Oh, I.S.;Lee, G.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.731-736
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems . Since the real impact force and acceleration at the contact surface are measured indirectly through the sensors, the measured outputs can be a little different from the real impact responses. In this study, the contact force model based on the Hertz law is proposed in order to predict the impact force correctly. To investigate the influence of the position of the sensor attached to the impacting bodies, the two kinds of sensors were used. Finally, the contact force model obtained by drop test was applied to predict the impact force between the moving part and the stopper in magnetic contactor.

  • PDF

Lifetime improvement of 4P Magnetic Contactor (4P 전자접촉기의 수명 향상)

  • Lee, Kyung-Ku;Ryu, Jong-Sang;Kim, Gyeon-Mook;Park, Ji-Hong;Jo, Hyun-Kil;Seo, Jung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.42-44
    • /
    • 2001
  • This paper proposes impact vibration theory of magnetic contactor moving mechanism and correlation test the bouncing time with the spring load. Mechanical and electrical lifetime is under the influence of impact vibration of magnetic contactor moving mechanism. In shortage of technique, we have experienced many difficulties in magnetic contactor development. By this research, we analyzed total moving mechanism and applied results to optimum 4p magnetic contactor development.

  • PDF

Development of a Miniature Pendular Type Impact Testing Machine Using a Magnetic Powder Brake (마그네틱 파우더 브레이크를 이용한 소형 진자형 충격시험기 개발)

  • You, In-Dong;Lee, Man-Suk;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.140-146
    • /
    • 2011
  • A miniature pendular type impact testing machine was designed and developed, adopting a magnetic powder brake in order to investigate tensile and shear behavior of a small solder ball at high speed. In this testing system, the potential energy of the pendulum is transferred into the impact energy during its drop. Then, the impact energy is transmitted through the striker which is connected to the push rods to push the specimen for tensile loading. The tensile behavior of lead-free solder ball in diameter of 760 ${\mu}m$ was successfully investigated in a speed range of 0.15 m/s~1.25 m/s using this designed device. The maximum tensile strength of the solder joint decreases with the loading speed in the testing condition. The maximum tensile strength of the joint was 56 MPa in the low speed region.

Prediction of a Strong Effect of a Wek Magnetic Field on Diffusion Assisted Reactions in Non Equilibrium Conditions

  • Kipriyanov, Alexey A. Jr.;Purtov, Peter A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1009-1014
    • /
    • 2012
  • The influence of magnetic fields on chemical processes has long been the subject of interest to researchers. For this time numerous investigations show that commonly the effect of a magnetic field on chemical reactions is insignificant with impact less than 10 percent. However, there are some papers that point to the observation of external magnetic field effect on chemical and biochemical systems actually having a significant impact on the reactions. Thus, of great interest is an active search for rather simple but realistic models, that are based on physically explicit assumptions and able to account for a strong effect of low magnetic fields. The present work theoretically deals with two models explaining how an applied weak magnetic field might influence the steady state of a non-equilibrium chemical system. It is assumed that external magnetic field can have effect on the rates of radical reactions occurring in a system. This, in turn, leads to bifurcation of the nonequilibrium stationary state and, thus, to a drastic change in the properties of chemical systems (temperature and reagent concentration).

Design and Performance Evaluation of Impact Type Actuator Using Magnetic Force (자기력을 이용한 충격형 액추에이터의 설계 및 성능 평가)

  • Min, Hyun-Jin;Lim, Hyung-Jun;Kim, Byung-Kyu;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1438-1445
    • /
    • 2002
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes have not been replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope that allows safe maneuverability in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfers momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjustment of impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulations show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

Magnetic Impact Actuator for Robotic Endoscope (대장내시경을 위한 자기 충격 액츄에이터)

  • 민현진;임형준;김병규;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.839-843
    • /
    • 2001
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes are not seemed to be replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope able to maneuver safely in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfer momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjusting impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulation experiments show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

  • PDF