• Title/Summary/Keyword: magnetic hyperfine field

Search Result 57, Processing Time 0.02 seconds

Magnetic Properties of Superparamagnetic Ni-Zn Ferrite for Nano·Bio Fusion Applications (나노·바이오 융합응용을 위한 초상자성 Ni-Zn Ferrite의 자기적 특성연구)

  • Lee, Seung-Wha;Ryu, Yeon-Guk;Yang, Kea-Joon;An, Jung-Su;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by DTA/TGA, XRD, SEM, and $M\ddot{o}ssbauer$ spectroscopy, VSM. $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ has spinel structure and behaved superparamagnetically. The estimated size of superparammagnetic Ni-Zn ferrite nanoparticle is around 10 nm. The hyperfine fields at 13 K for the A and B patterns were found to be 533 and 507 kOe, respectively. The blocking temperature ($T_B$) of superparammagnetic $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 250 K. The magnetic anisotropy constant and relaxation time constant of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle were calculated to be $1.6\times10^6\;ergs/cm^3$ and ${\tau}_0=5.0{\times}10^{-13}$ s, respectively. Also, Temperature increased up to $43^{\circ}C$ within 10 minutes under AC magnetic field of 7 MHz. It is considered that $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ is available for biomedicine application such as hyperthermia, drug delivery system and contrast agents in MRI.

Mössbauer Studies of the Magnetic Properties in Ba-ferrite Single Crystal (Ba-Ferrite 단결정의 자기적 특성에 관한 뫼스바우어 분광학적 연구)

  • Sur, J.C.;Gee, S.H.;Hong, Y.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.60-64
    • /
    • 2007
  • Ba-Ferrite single crystals were prepared and characterized by X-ray, SEM and Mossbauer spectroscopy. The single crystal layers was cut in the c-axis and radiated to the surface by ${\gamma}-rays$ for Mossbauer spectroscopy. We found out that the spin states in Fe atoms were parallel to the ${\gamma}-rays$ direction. The temperature dependence of the hyperfine field is almost similar to that of powder samples. The crystal structure is a Magnetoplumbite without any other phases and the lattice parameters are found out with $a_0=5.892{\AA},\;b_0=5.892{\AA},\;c_0=23.198{\AA}$. $M\"{o}ssbauer$ spectrum in single crystal have 5 sets off absorption lines in each Fe site when the ${\gamma}-rays$ have the same radiation direction with the c-axis in the crystal, which mean that the whole crystal bulk formed only one crystal and same spin direction. The hysteresis curve shows the saturation moment and coercive force of 70.71 emu/g and 320 Oe respectively.

Mössbauer Studied of Multiferroic Bi2/3La1/3FeO3 Nanoparticles (Multiferroic Bi2/3La1/3FeO3 나노입자의 Mössbauer 연구)

  • Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2006
  • La substituted perovskite $BiFeO_3$ have been prepared by a sol-gel method. Magnetic and structural properties of the powders were characterized with Mossbauer spectroscopy, XRD, SEM, and TG-DTA. The crystal structure is found to be a rhombohedrally distorted perovskite structure with the lattice constant $\alpha=3.985{\AA}\;and\;\alpha=89.5^{\circ}.\;Bi_{2/3}La_{1/3}FeO_3$ powders that were annealed at and above $600^{\circ}C$ have a single-phase perovskite structure. However, powders annealed at $900^{\circ}C$ have a typical perovskite structure with small amount of $Bi_2O_3$ phase. The Neel temperature of $Bi_{2/3}La_{1/3}FeO_3$ is found to be $680\pm3K$. The isomer shift value at room temperature is found to be 0.27 mm/s relative to the Fe metal, which is consistent with high-spin $Fe^{3+}$ charge states. Debye temperature far$Bi_{2/3}La_{1/3}FeO_3$ is found to be $305\pm5K$. The average hyperfine field $H_{hf}(T)$ of the $Bi_{2/3}La_{1/3}FeO_3$, shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.42(T/T_N)^{3/2}-0.13(T/T_N)^{5/2}$ for $T/T_N<0.7$ indicative of spin-wave excitation.

The Spin Reorientations in $\alpha-Fe_2O_3$ Thin Film ($\alpha-Fe_2O_3$ 박막에서 스핀 재 정렬에 관한 연구)

  • 서정철;이호선
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • $\alpha$-Fe$_2$O$_3$ thin films were prepared on Si substrate by a pulsed laser deposition system and characterized by X-ray and Mossbauer spectroscopy. The appropriate conditions of pulsation was the power of 5.128 W/cm2 at on oxygen pressure of 0.1 Torr at a substrate temperature of 30$0^{\circ}C$. After that the film was heated at 80$0^{\circ}C$ for 1 day. The particles shape deposited on the film was ellipsoidal and the average length and width were 200~300 nm, 70~150 am respectively. The crystal structure was conformed to be of corundums symmetry with the hexagonal unit cell having a lattice constant of u = 5.03$\pm$0.05 $\AA$, c = 13.735$\pm$0.05 $\AA$. The average angles between the atomic spin and the magnetic hyperfine field of Fe ion were 38$^{\circ}$and 48$^{\circ}$ at above and blow the Morin transition temperature respectively. The Morin transition was found to occur at the temperature ranges from 200 K to room temperature and atomic spin direction was assumed to change from 48$^{\circ}$ to 80$^{\circ}$in respect to the c-axis.

  • PDF

Mössbauer Studies of Manganese Iron Oxide Nanoparticles (망간-철산화물 나노입자의 뫼스바우어 분광 연구)

  • Hyun, Sung-Wook;Shim, In-Bo;Kim, Chul-Sung;Kang, Kyung-Su;Park, Chu-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • We have prepared $MnFe_2O_4$ nanoparticles with polyol method. The crystallographic and magnetic properties were measured by using X-ray diffraction(XRD), vibrating sample magnetometer(VSM) and $M\"{o}ssbauer$ spectroscopy. The high resolution transmission electron microscope(HRTEM) shows uniform nanoparticle-sizes with $6{\sim}8$ nm. The crystal structure is found to be single-phase cubic spinel with space group of Fd3m. The lattice constant of $MnFe_2O_4$ nanparticles is determined to be $8.418{\pm}0.001{\AA}$. $M\"{o}ssbauer$ spectrum of $MnFe_2O_4$ nanparticles at room temperature(RT) shows a superparamagnetic behavior. In VSM analysis, the diagnosis of the superparamagnetic behavior is also shown in hysteresis loop at RT. $M\"{o}ssbauer$ spectrum at 4.2K shows that the well developed two sextets are with different hyperfine field $H_{hfA}=498$(A-site) and $H_{hfB}=521$(B-site) kOe.

A study on the crystallographic and magnetic Properties of Ce doped Garnet (Ce이 치환된 YIG garnet의 결정학적 및 자기적 성질 연구)

  • Kum, Jun-Sig;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.46-50
    • /
    • 2004
  • Compounds of $Y_{3-x}Ce_{x}Fe{5}O_{12}$(x=0.0, 0.1, 0.2, and 0.3) were prepared using the sol-gel method. The XRD measurements show that these samples have only a single phase of the garnet structure regardless of the amount of Ce substitution. The lattice constants of x = 0.0 and x = 0.3 were found to be a$_0$ = 12.3758 ${\pm}$0.0005 ${\AA}$ and 12.4062 ${\pm}$0.0005 ${\AA}$, respectively. The lattice constant increases linearly with increasing Ce concentration. The saturation magnetization was not changed flirty, with increasing Ce concentration, but coercivity decreased form 18.3 Oe to 5.8 Oe as x increased form x = 0.0 to x = 0.1. Mossbauer spectra of $Y_{3-x}Ce_{x}Fe{5}O_{12}$ were measured at various absorber temperatures from 13 K to Neel temperature. The Mossbauer spectra were fitted by least-squares technique with two subpatterns of Fe sites in the structure and corresponding to the 16a and 24d site. The temperature dependence of the magnetic hyperfine field in $^{57}$/Fe nuclei at the tetrahedral 240 and octahedral 16a sites were analyzed based on the Neel theory of ferrirnagnetism. The result of the Debye temperatures indicated that the inter-atomic binding force for the 24d site was larger than that for the 16a site.

Study of Mg2Ni1-xFex Alloys by Mössbauer Resonance (Mössbauer 공명에 의한 Mg2Ni1-xFex 합금의 연구)

  • Song, MyoungYoup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • After preparing $Mg_2Ni_{1-x}{^{57}}Fe_x$(x=0.015, 0.03, 0.06, 0.12 and 0.24) alloys, they were studied by $M{\ddot{o}}ssbauer$ resonance. The $M{\ddot{o}}ssbauer$ spectra of x=0.015 and 0.03 alloys exhibit two doublets (doublet 1, 2). That of x=0.06 alloys shows two doublets (doublet 1,2) and one six-line, and those of x=0.12 and 0.24 alloys have only one six-line. The doublet 1 for x=0.015, 0.03 and 0.06 alloys is considered to result from a fraction of Fe in excess showing a superparamagnetic behavior. The doublet 2 is considered to result from the Fe substituted for Ni in the $Mg_2Ni$ phase. The values of isomer shift 0.24 ~ 0.28 mm/s suggest that the iron exist in the state $Fe^{+3}$. The result that the quadrapole splitting of the doublet 2 is not zero shows that the distribution of electrons around the iron is asymmetric. Their values for the doublet 2, 1.20 ~ 1.38 mm/s, approach the value of quadrapole for the oxidation number +3. The six-line showing the magnetic hyperfine interactions results from the iron which has not substituted the nickel in the $Mg_2Ni$ phase. The $M{\ddot{o}}ssbauer$ spectra of the hydrided alloys with x=0.015 and 0.03 show six-line. This suggests that the iron segregates with the hydriding reaction. The analysis results of the $M{\ddot{o}}ssbauer$ spectrum, the variation of magnetization with magnetic field, Auger electron spectroscopy and electron diffraction show the segregation of Ni and the formation of MgO. This is considered to result from the reaction of the $Mg_2Ni$ phase with the oxygen contained in the hydrogen as impurity.

  • PDF