• Title/Summary/Keyword: magnetic friction

Search Result 173, Processing Time 0.026 seconds

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.

Design of Ball Bearing Type OIS Actuator for Mobile Camera Module (모바일 카메라 모듈용 볼베어링 방식 OIS 액추에이터 설계)

  • Song, Myeong-Gyu;Son, Dong-Hun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Lim, Soo-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.361-372
    • /
    • 2010
  • Optical image stabilization is a technique to compensate the image blurring caused by some vibrations of camera at the exposure time. Pitching and yawing of camera are sensitive to the image quality so they are usually compensated by optical image stabilization. Corresponding pitching and yawing of a camera, a lens or the image sensor is translated in two-axis direction and then the optical path of camera is adjusted. In this paper, two-axis OIS actuator for mobile camera module is suggested and designed. The actuator is a voice-coil actuator that uses the electromagnetic force of voice-coil to make compensation motions. And ball bearing is used to reduce friction force. Magnetic attractive force between magnets and yokes acts as a preload and magnet springs. Prototype actuator is fabricated to measure the friction force and to verify the feasibility of the OIS actuator with ball bearing. At last, the actuator is improved in consideration of driving force and friction force. Design of experiments is used for designing the actuator.

A HDD Latch Design Using Electro-magnetic Force of VCM Actuators (VCM 액추에이터의 전자기력을 이용한 HDD 래치 설계)

  • Kim, Kyung-Ho;Oh, Dong-Ho;Shin, Bu-Hyun;Lee, Seung-Yop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.788-794
    • /
    • 2009
  • Various types of latch designs for hard disk drives using load/unload mechanism have been introduced to protect undesired release motions of a voice coil motor(VCM) actuator from sudden disturbances. Recently, various inertia-type latches have been widely used because locking performance is better than that of other types of latch. However there has been a limit in the inertia type in order to guarantee perfect latch and unlatch operations because of changes in latch/unlatch conditions due to mechanical tolerance and temperature-dependent friction. In this paper, a reliable and robust magnetic latch mechanism is proposed through only simple modifications of coil and yoke shapes in order to overcome the mechanical limit of current inertia-type latches. This new magnetic latch does not have only a simple structure but it also ensures reliable operations and anti-shock performance. The operating mechanism of the proposed latch is theoretically analyzed and optimally designed using an electromagnetic simulation.

Analytical and Experimental Studies on the design of Electromagnetic Shock Absorber (전자기식 충격흡수구조의 설계를 위한 동특성 해석 및 실험)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Im, Jae-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • A shock absorber with magnetic effects is suggested for a lunar space-ship expected to launch in 2025. The device consists of a copper steel combined tube, two magnets, and a piston. The piston is designed to move a magnet through the tube when it is pushed by an external impact. While the magnet is moving in the tube, it generates the eddy current force with the copper part of the tube and it also makes the large friction force with the steel part of the tube. Beside, it gets resistive forces against its movement such as the magnetic force with a steel-ring at the first time of the movement and the repulsive force with a same pole opposed magnet at the end time of the movement. In this thesis, results of analyses and experiments of each force are represented and the expected performance of the electromagnetic shock absorber is drawn from the results.

Development of a Noncontacting 6 DOF Micro-Postioner Driven by Magnetic Force-Design, Modeling and Control- (자기력을 이용한 비접촉 6자유도 미소위치결정 기구의 개발-설계, 모델링 및 제어-)

  • Choi, Kee-Bong;Park, Kyi-Hwan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1164-1176
    • /
    • 1996
  • A magnetically levitated micro-positioner is implemented to avoid mechanical friction and increase precision. Since magnetic levitation system is inherently unstable, most concern is focused on a magnetic circuit design to increase the system dynamic stability. For this, the proposed levitation system is constructed by using an antagonistic structure which permits a simple design and robust stability. From the dynamic equations of motion, it is verified that the proposed magnetically levitated system is decoupled in 6 degree-of-freedom motion. Experimental results are presented in terms of time response and accuracy.

Analysis of Iron-filings Trapping Characteristics on Concrete Slab Track using Permanent Magnet (영구자석을 이용한 콘크리트 궤도상의 쇠가루 포집장치 특성 분석 연구)

  • Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • Iron fillings which were accumulated around the rail was often the cause of abnormal signal in case of signaling equipment using rail as transmission line. Iron fillings were generated on curved section of railroad due to the friction between rail and wheel, and metro line company urged to find the way to remove these iron fillings, because these were often the cause of abnormal signal. Magnetic device for trapping iron fillings around concrete slab tracks is introduced. The characteristics of magnetic device were analyzed using basic design and numerical analysis method. Magnetic device for trapping iron fillings were examined for application to the train which were operating in commercial line.

A Study on Design and Control of Tracking Actuator in Optical Disc (광디스크용 트랙킹 구동기의 설계 및 제어에 관한 연구)

  • 최인묵;한창수;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.454-457
    • /
    • 1995
  • In optical disc system, tracking actuator is consisted of coarse actuator and fine tracking actuator. This, two-stage actuator, requires many devices and two servos for large stroke and precisional displacement. These complicate configuration increases moving mass. So dynamic characteristics become bad, that is, sensitivity of high frequency gain decrease. In this paper, frequency performance is willing to be better as so one dimensional tracking actuator is designed. In order to investigate the performance of the proposed tracking actuator, the Bode diagram is plotted with Dynamic analyzer and friction characteristic is explained. Finally, tracking error performance is ins investigated into 0.1 .mu.m resolution with MATLAB simulation.

  • PDF

Identification of Mechanical Characteristics of Superconductor proceeding Bearing (초전도 저널베어링의 기계적 특성에 대한 연구)

  • Yun, H.J.;Han, Y.H.;Han, S.C.;Jeong, N.H.;Kim, J.;Sung, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2163-2166
    • /
    • 2004
  • For designing high Tc superconductor proceeding bearing(HTSJB) which is used on a flywheel energy storage system which requests the free of the bearing loss caused by the friction, it is necessary to understand the basic characteristics of the classical superconductor proceeding bearing because the mechanical characteristics of the HTSJB are identified by the magnetic relationships between the permanent magnet(PM) and the high Tc superconductor(HTS). In this paper, using the method, frozen image model, the force problems between the PM and the HTS were solved and then the dynamic characteristics of the rotor inside of the HTSJB can be expected in advance by using the basic characteristics between the PM and the HTS. The coefficient of friction of the HTSJB was measured in the vacuum environment. From the results, the mechanical characteristics of HTSJB can be identified using the numerical models.

  • PDF

Experimental Works and Power Loss Calculations of Surface-Mounted Permanent Magnet Machines

  • Choi, Jang-Young;Ko, Kyoung-Jin;Jang, Seok-Myeong
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2011
  • Surface-mounted permanent magnet (PM) machines were examined experimentally and theoretically, through power loss measurements and calculations. Windage, friction and copper losses were calculated using simple analytical equations and finite element (FE) analyses. Stator core losses were calculated by determining core loss coefficients through curve-fitting and magnetic behavior analysis through non-linear FE calculations. Rotor eddy current losses were calculated using FE analyses that considered the time harmonics of phase current according to load. Core, windage and friction open-circuit losses and copper loss were determined experimentally to test the validity of the analyses.