• Title/Summary/Keyword: magnetic filter

Search Result 310, Processing Time 0.03 seconds

Basic study on high gradient magnetic separation of nano beads using superconducting magnet for antibody purification

  • Jeongtae Kim;Insung Park;Gwantae Kim;Myunghwan Sohn;Sanghoon Lee;Arim Byun;Jin-sil Choi;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.60-64
    • /
    • 2023
  • The manufacturing process of antibody drugs comprises two main stages: the upstream process for antibody cultivation and the downstream process for antibody extraction. The domestic bio industry has excellent technology for the upstream process. However, it relies on the technology of foreign countries to execute downstream process such as affinity chromatography. Furthermore, there are no domestic companies capable of producing the equipment for affinity chromatography. High gradient magnetic separation technology using a high temperature superconducting magnet as a novel antibody separation and purification technology is introduced to substitute for the traditional technology of affinity chromatography. A specially designed magnetic filter was equipped in the bore of the superconducting magnet enabling the continuous magnetic separation of nano-sized paramagnetic beads that can be used as affinity magnetic nano beads for antibodies. To optimize the magnetic filter that captures superparamagnetic nanoparticles effectively, various shapes and materials were examined for the magnetic filter. The result of magnetic separation experiments show that the maximum separation and recovery ratio of superparamagnetic nanoparticles are 99.2 %, and 99.07 %, respectively under magnetic field (3 T) and flow rate (600 litter/hr).

Human Body Orientation Tracking System Using Inertial and Magnetic Sensors (관성 센서와 지자계 센서를 사용한 인체 방향 추적 시스템)

  • Choi, H.R.;Ryu, M.H.;Yang, Y.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • This study proposes a human body orientation tracking system by inertial and earth magnetic sensors. These sensors were fused by indirect Kalman filter. The proposed tracking system was configured and the filter was implemented. The tracking performance was evaluated with static and dynamic tests. In static test, the sensor was fixed on the floor while its static characteristics was analyzed. In dynamic test, the sensor was held and moved manually for 30 seconds. The dynamic test included x, y, z axis rotations, and elbow flection/extension motions that mimic drinking. For these dynamic motions, the tracking angle error was under $4.1^{\circ}$ on average. The proposed tracking method is expected to be useful for various human body motion analysis.

A Development of Fluxgate Sensor-based Drone Magnetic Exploration System (플럭스게이트 센서 기반 드론 자력탐사 시스템 개발)

  • Noh, Myounggun;Lee, Seulki;Lee, Heuisoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, we have developed a drone magnetic exploration system (proto-type) using a fluxgate magnetic sensor. Hardware of the system consists of a fluxgate magnetometer, an inertial measurement unit (IMU), a GPS, and a communication module. And we have developed monitoring software, which enables it to transmit the measured data to the ground control system (GCS) in real time. The measured magnetic data are finally saved as 1 Hz data after passing through a notch filter and a band-pass filter. For verification of this system, a preliminary test was conducted to check the magnetic responses of a magnetic object first, then the field test was carried out in two iron mines. We tested the developed system on the field test in Pocheon, Gyeonggi and Jeongseon, Gangwon. The magnetic data from the developed drone system was very similar to those from unmanned airship system developed by Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result, preliminary experiment and field test have demonstrated that this system is applicable for outdoor aeromagnetic exploration. It requires more studies to improve filter function and instrument performance to minimize noise in the future.

The Study of Particle Filter Localization Algorithm Based on Magnetic Field Data

  • Chang, Kun;Huang, He;Jing, Changfeng;Deng, Nanshan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2016
  • Most of the indoor positioning algorithms based on magnetic data mainly focus on reducing the accumulated error of the odometry data, such as signals produced by the inertial sensors. However, in most cases such as positioning by using smartphones in the indoor environment, those approaches seem unfeasible due to the absence of the inertial sensors. Thus, in this paper, we try to study a positioning algorithm exclusively based on the magnetic data. We refer to some thinking from the steps of Particle Filter and conduct an experiment to verify the application of the new algorithm. Besides, we use the variance of the result of the previous step to decrease the area to be matched in the next step, intending to improve the accuracy of the results. The result of the experiment shows that the new algorithm has a high probability to match with accuracy less than 2 meters in a 24 meters by 2.6 meters corridor.

A New Design of Trisection Band-Pass Filter Based on Electromagnetic Simulation (EM 시뮬레이션을 기반으로 한 트라이섹션 대역 통과 여파기의 새로운 설계)

  • Kim, So-Su;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1086-1096
    • /
    • 2011
  • In this paper, we present the trisection band-pass filter with a transmission zero at 2.63 GHz, which has a center frequency of 2.44 GHz, relative bandwidth of 5 %, and return loss of 18 dB, based on a multi-port ElectroMagnetic simulation. The coupling matrix for the trisection filter is calculated and this filter is transformed into band-pass filter prototype through a lossless 2-port circuit transformation. The J-inverter values and slope parameters of each individual resonator are computed using an EM simulation Y-parameters of the filter with multi port. The dimensions of desired filter are determined by matching the computed J-inverter and susceptance slope parameters to those of the prototype band-pass filter. Undesired cross-couplings are found to occur which does not appear in the prototype trisection filter. To overcome the problem of undesired couplings, the filter was optimized to satisfy the same frequency response of prototype filter. The validity of the proposed design method was verified through the implementation of the designed and optimized filter.

Modeling and Filter Design through Analysis of Conducted EMI in Switching Power Converters

  • Vimala, R.;Baskaran, K.;Aravind Britto, K.R.
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.632-642
    • /
    • 2012
  • This paper presents a filter analysis of conducted Electro-Magnetic Interference (EMI) in switching power converters (SPC) based on noise impedances. The EMI characteristics of SPC can be analytically deduced from a circuit theoretical viewpoint. The analytical noise model is investigated to get a full understanding of the EMI mechanism. It is shown that with suitable and justified model, filters pertinent to EMI noise is investigated. The EMI noise is identified by time domain measurements associated with an isolated half-bridge ac-dc converter. Practical filters like LC filter, ${\pi}$ filter and complete EMI filters are investigated. The proposed analysis and results can provide a guideline for improving the effectiveness of filtering schemes in SPC. Experimental results are also included to verify the validity of the proposed method. The results obtained satisfy the Federal Communications Commission (FCC) class A and class B regulations.

Treatment of rolling cooling waste water by superconductor HGMS method (초전도 자기분리에 의한 냉연공정 폐수처리)

  • Kim, Tae-Hyung;Ha, Dong-Woo;Oh, Sang-Soo;Kim, Young-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.295-295
    • /
    • 2008
  • This study introduced waste water treatment method applied superconductor HGMS(High Gradient Magnetic Separation). HGMS method treat high efficient method for various waste water. we have surveyed superconducting magnetic separation technology and reviewed the status of related industries using applied superconductivity. We fabricated the prototypes of magnetic matrix filter consisting of stainless steel mesh, which is a core component in the magnetic separation system. In our basic preliminary experiment using HGMS, it was made clear that the fine para-magnetic particles in the rolling colling wasted water obtained from rolling process of POSCO can be separated with high efficiency.

  • PDF

Ca II Transient Brightenings associated with Canceling Magnetic Features

  • Park, So-Young;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.96.2-96.2
    • /
    • 2011
  • We analyzed transient Ca II brightening associated with small-scale canceling magnetic features in the quiet Sun near disk center using Ca II H and NaD1 filter images of the SOT/Hinode. We found that in most Ca II brightening related to CMFs the Ca II intensity peaks after magnetic flux cancellation proceeds. Moreover, brightening tend to appear as pairs of bright points of similar size and similar brightness overlying magnetic bipoles. These results imply that magnetic reconnection taking place in the chromosphere or above may be in charge of CMFs.

  • PDF

Magnetic Saliency Estimation of SMPM Motor for Precise Torque Control using State-Filter in Flux-Weakening Operation (정밀 토크 제어를 위한 SMPM 전동기의 약자속 영역에서 자기 돌극성 추정)

  • Jang, Ju-Young;Choi, Chan-Hee;Seok, Jul-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.67-73
    • /
    • 2009
  • The magnetic saliency effect in surface-mounted permanent-magnet (SMPM) motors on the torque control at high speeds is first presented and analyzed in this paper. The d- and q- axes impedance are measured by proposed State-Filter. Measurement of the d- and q- axes impedance difference is performed to prove the existence of the magnetic saliency. Then, the saliency effects on the torque control performance in the flux weakening region are discussed. Based on the developed motor modeling with the reluctance torque, the proposed control adjusts the d- and q-axis current toward the operating point to track the commanded torque. The feasibility of the presented idea is verified by experimental results on a commercial 600[W] SMPM motor.