• Title/Summary/Keyword: magnetic field parameter

Search Result 228, Processing Time 0.03 seconds

ANALYSIS OF MAGNETIC FIELD AND DYNAMIC BEHAVIOR OF THE PERMANENT MAGNETIC ACTUATOR (자계해석을 통한 영구자석형 차단기 조작기의 동작특성 해석)

  • Kang, Jong-Ho;Park, Sang-Hoon;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.46-48
    • /
    • 2002
  • This paper formulates the principle of the permanent magnetic actuator (PMA) and its dynamic characteristic calculation. Some results of the calculation and analysis of the dynamic curves are presented. Due to its great advantages, PMA that presented recently drew great attention from engineers all over the world. We present the magnetic field and actuator using finite element method associated to parameter calculating the displacement of the moving parts and the supplying current when the actuator is DC voltage supplied or capacitor supplied. In this paper, We will do compare of dynamic behavior between DC voltage supplied and capacitor discharge supplied.

  • PDF

Effect of Alternating Magnetic Field on Ion Activation in Low Temperature Polycrystalline Silicon Technology

  • Hwang, Jin Ha;Lim, Tae Hyung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2004
  • Statistical design of experiments was successfully employed to investigate the effect of alternating magnetic field on activation of polycrystalline Si (p-Si) doped as n-type using $\textrm{PH}_3$, by full factorial design of three factors with two levels. In this design, the input variables are graphite size, alternating current, and activation time. The output parameter, sheet resistance, is analyzed in terms of the primary effects and multi-factor interactions. Notably, the three-factor interaction is calculated to be a dominant interaction. The interaction between graphite size and activation time and the main effect of current are important effects compared to the other variables and relevant interactions. Alternating magnetic flux activation is proved a significantly beneficial processing technique.

  • PDF

Analysis of Magnetic Marker for Autonomous Vehicle Guidance System Using 3-axis Magnetic Sensor

  • Lim, Dae-Young;Ryoo, Young-Jae;Kim, Eui-Sun;Mok, Jei-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1460-1463
    • /
    • 2005
  • In this paper, analysis of magnetic marker for autonomous vehicle guidance system using 3-axis magnetic sensor propose. Position sensing is an important an estimation system of vehicle position and orientation on magnetic lane, which is a parameter of the steering controller for automated lane following is described. To verify that the magnetic dipole model could be applied to a magnetic unit paved in roadway, the analysis of the data 3-axis magnetic field measured experimentally.

  • PDF

SUNSPOT MODELING AND SCALING LAWS

  • SKUMANICH A.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.1-5
    • /
    • 2003
  • In an early paper Skumanich suggested the existence of a scaling law relating the mean sunspot magnetic field with the square-root of the photospheric pressure. This was derived from an analysis of a variety of theoretical spot models including those by Yun (1968). These were based on the Schliiter-Temesvary (S- T) similarity assumption. To answer criticisms that such modeling may have unphysical (non-axial maxima) solutions, the S-T model was revisited, Moon et al. (1998), with an improved vector potential function. We consider here the consequences of this work for the scaling relation. We show that by dimensionalizing the lateral force balance equation for the S- T model one finds that a single parameter enters as a characteristic value of the solution. This parameter yields Skumanich's scaling directly. Using an observed universal flux-radius relation for dark solar magnetic features (spots and pores) for comparison, we find good to fair agreement with Yun's characteristic value, however the Moon et al. values deviate significantly.

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

Parametric Analysis of the Electric and Magnetic Field Waveforms Produced by Intracloud Lightning Discharges (운방전에 의해 발생한 전계와 자계 파형의 파라미터 분석)

  • Lee, Bok-Hee;Lee, Woo-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.81-88
    • /
    • 2006
  • In this study, the electric and magnetic fields measuring system were designed and fabricated to investigate the electric characteristics of lightning discharges. Frequency bandwidth of electric field measuring system ranges from 40[Hz] to 2.6[MHz] and its response characteristic is 2.1[(V/m)/mV]. Frequency bandwidth of magnetic field measuring system ranges from 300[Hz] to 1[MHz] and its response characteristic is 2.8[nT/mV]. Electric and magnetic fields due to intracloud lightning discharges were observed and their waveform parameters were statistically analyzed. As a result, waveform parameters of electric and magnetic fields are nearly independent of polarity. The mean rise times and the zero-crossing times of electric and magnetic fields are approximately $5.5[{\mu}s]\;and\;21[{\mu}s]$, respectively.

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.

Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT

  • Jamali, M.;Shojaee, T.;Mohammadi, B.;Kolahchi, R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.405-417
    • /
    • 2019
  • This research is devoted to study post-buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) micro plate with cut out subjected to magnetic field and resting on elastic medium. The basic formulation of plate is based on first order shear deformation theory (FSDT) and the material properties of FG-CNTRCs are presumed to be changed through the thickness direction, and are assumed based on rule of mixture; moreover, nonlocal Eringen's theory is applied to consider the size-dependent effect. It is considered that the system is embedded in elastic medium and subjected to longitudinal magnetic field. Energy approach, domain decomposition and Rayleigh-Ritz methods in conjunction with Newton-Raphson iterative technique are employed to trace the post-buckling paths of FG-CNTRC micro cut out plate. The influence of some important parameters such as small scale effect, cut out dimension, different types of FG distributions of CNTs, volume fraction of CNTs, aspect ratio of plate, magnitude of magnetic field, elastic medium and biaxial load on the post-buckling behavior of system are calculated. With respect to results, it is concluded that the aspect ratio and length of square cut out have negative effect on post-buckling response of micro composite plate. Furthermore, existence of CNTs in system causes improvement in the post-buckling behavior of plate and different distributions of CNTs in plate have diverse response. Meanwhile, nonlocal parameter and biaxial compression load on the plate has negative effect on post-buckling response. In addition, imposing magnetic field increases the post-buckling load of the microstructure.

Design and Evaluation of Pulsed Electromagnetic Field Stimulation Parameter Variable System for Cell and Animal Models (세포 및 동물모델용 펄스형 전자기장 자극 파라미터 가변장치 설계 및 평가)

  • Lee, Jawoo;Park, Changsoon;Kim, Junyoung;Lee, Yongheum
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • An electromagnetic generator with variable stimulation parameters is required to conduct basic research on magnetic flux density and frequency for pulsed electromagnetic fields (PEMFs). In this study, we design an electromagnetic generator that can conduct basic research by providing parameters optimized for cell and animal experimental conditions through adjustable stimulation parameters. The magnetic core was selected as a solenoid capable of uniform and stable electromagnetic stimulation. The solenoid was designed in consideration of the experimental mouse and cell culture dish insertion. A voltage and current adjustable power supply for variable magnetic flux density was designed. The system was designed to be adjustable in frequency and pulse width and to enable 3-channel output. The reliability of the system and solenoid was evaluated through magnetic flux density, frequency, and pulse width measurements. The measured magnetic flux density was expressed as an image and qualitatively observed. Based on the acquired image, the stimulation area according to the magnetic flux density decrease rate was extracted. The PEMF frequency and pulse width error rates were presented as mean ± SD, and were confirmed to be 0.0928 ± 0.0934% and 0.529 ± 0.527%, respectively. The magnetic flux density decreased as the distance from the center of the solenoid increased, and decreased sharply from 60 mm or more. The length of the magnetic stimulation area according to the degree of magnetic flux density decrease was obtained through the magnetic flux density image. A PEMF generator and stimulation parameter control system suitable for cell and animal models were designed, and system reliability was evaluated.

Fabrication and Characteristic of an InSb Mognetic Flvxmeter (InSb 자속계의 제작과 그 특성에 관한 연구)

  • 윤재강;유용택
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.6
    • /
    • pp.5-8
    • /
    • 1975
  • An Insb magnetic fluxmeter was made of InSb Single Crystal that was grown by Bridgemannmethods and then purified by vapor cone refining method. We investigated some properties of the InSb magneto fluxmeter. It was found that the resistivity and the Hall Coefficient of this single Crystal Were 4.4${\times}10^{-2}{\Omega}$ and $4.5\textrm{cm}^3$/Coul, respectively, at room temperature. The Characteristic Curve of the InSb magnetic fluxmeter between the magnetic field the Hall voltage, with the Current flowing through the element a Parameter, had good lineanty i.e., We obtained a linear Calibration Curve of the flwmeter. The fluxmeter erved the purpose well enough up to 5 k-gaus.

  • PDF