• Title/Summary/Keyword: magnetic field parameter

Search Result 228, Processing Time 0.042 seconds

E.M.F Characteristic of Superconducting Synchronous Generator according to Design Parameter (설계변수 변화에 따른 초전도 동기 발전기의 유기기전력 특성)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.65-68
    • /
    • 1999
  • The major deisng parameters that are considered in this paper are: 1) EMF according to width of field coil. 2) EMF according to magnetic shield length. Because of superconducting generator (SG) is actually and air cored machine with its rotor iron and stator iron teeth having been removed. In this case, the desing of the SG must be based on the 3D analysis of the magnetic field. This study presents an effective armature winding type with 3D FEM(Finite Element Method), and compares analyzed and measured results.

  • PDF

Piezoelectric Energy Harvesting Characteristics of GaN Nanowires Prepared by a Magnetic Field-Assisted CVD Process

  • Han, Chan Su;Lee, Tae Hyeon;Kim, Gwang Mook;Lee, Da Yun;Cho, Yong Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.167-170
    • /
    • 2016
  • Various piezoelectric nanostructures have been extensively studied for competitive energy harvesting applications. Here, GaN nanowires grown by a nonconventional magnetic field-assisted chemical vapor deposition process were investigated to characterize the piezoelectric energy harvesting characteristics. As a controlling parameter, only the growth time was changed from 15 min to 90 min to obtain different crystallinity and morphology of the nanowires. Energy harvesting characteristics were found to depend largely on the growth time. A longer growth time tended to lead to an increased output current, which is reasonable when considering the enhanced charge potentials and crystallinity. A maximum output current of ~14.1 nA was obtained for the 90 min-processed nanowires.

HYDROMAGNETIC FLOW IN A CAVITY WITH RADIATIVELY ACTIVE WALLS (복사벽면으로 구성된 캐비티 내 전자열유체 유동)

  • Han, Cho-Young;Chae, Jong-Won;Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.87-94
    • /
    • 2010
  • Hydromagnetic flow in a cavity under a uniform magnetic field is studied numerically. The cavity is comprised of four radiatively active surfaces. Due to large temperature difference inside a cavity, the radiative interaction between walls is taken into account. The coupled momentum and energy equations are solved by SIMPLER algorithm while the radiant heat exchanges are obtained by the finite volume method for radiation. A Wide range of Grashof numbers is examined as a controlling parameter. Resultant flow and heat transfer characteristics are investigated as well.

Preparation of Al Thin Film with Magnetic Field Distribution (자계 분포 변화에 따른 OLED용 Al 박막의 제작)

  • Kim, Hyeon-Ung;Jo, Beom-Jin;Keum, Min-Jong;Kim, Kyung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.65-67
    • /
    • 2005
  • The Al electrode for OLED was prepared by Facing Targets Sputtering(FTS) system which can reduce the damage of organic layer. The Al thin films were deposited on the cell (Lif/EML/HTL/Bottom electrode : ITO) for examination the current-voltage properties of OLED with magnetic field distribution between two faced targets. Thickness and current-voltage properties of Al thin films are measured by ${\alpha}-step$ and semiconductor parameter analyzer (HP4156A), respectively.

  • PDF

Power and loss characteristics of PMSM/G with double-sided Halbach magnetized rotor (양측식 Halbach 자화 회전자를 갖는 영구자석 동기 전동발전기의 출력 및 손실 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Choi, Sang-Kyou
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.723-724
    • /
    • 2008
  • The rotational loss is one of the most important problems for the practical applications of PM synchronous motor/generator. This rotational loss is divided as the mechanical loss by windage and bearing and iron loss by hysteresis loop and eddy current in the part of the magnetic field. So, In this paper, a double-sided PMSM/G without the iron loss is designed by analytical method of the magnetic field and estimation of the back-EMF constant represented as the design parameter. This design model consists of the double-sided PM rotor with Halbach magnetized array and coreless 3-phase winding stator. The results show that the double-sided PMSM/G without iron loss can be applicable to the required system without the rotational loss.

  • PDF

Experimental Verification and Prediction of Generating Performance of PMG with Multi-Pole Rotor based on Electromagnetic Analysis and Parameter Estimation considering Skew Effects (스큐를 고려한 다극 영구자석 발전기의 전자기 특성해석/제어정수 도출을 통한 발전특성 예측 및 실험적 검증)

  • Jang, Seok-Myeong;Choi, Jang-Young;Ko, Kyoung-Jin;Park, Ji-Hoon;Lee, Sung-Ho;Kim, Ii-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.752-753
    • /
    • 2008
  • The analytical expressions for magnetic field distributions considering slotting effects, cogging torque and back-emf considering skew effects are established. On the basis of magnetic field solutions, electrical parameters such as back-emf constant and winding inductance are obtained. The predicted results are validated extensively by non-linear finite element (FE) analyses. In particular, test results such as back-emf, cogging torque, inductance and resistance measurements are given to confirm the analyses. Finally, generating performances are investigated by applying estimated parameters to equivalent circuit (EC) of the permanent magnet generator (PMG) and validated extensively by FE calculations and measurements.

  • PDF

Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field

  • Abrar, Muhammad N.;Haq, Rizwan Ul;Awais, Muhammad;Rashid, Irfan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1680-1688
    • /
    • 2017
  • In this study, analysis is performed on entropy generation during cilia transport of water based titanium dioxide nanoparticles in the presence of viscous dissipation. Moreover, thermal heat flux is considered at the surface of a channel with ciliated walls. Mathematical formulation is constructed in the form of nonlinear partial differential equations. Making use of suitable variables, the set of partial differential equations is reduced to coupled nonlinear ordinary differential equations. Closed form exact solutions are obtained for velocity, temperature, and pressure gradient. Graphical illustrations for emerging flow parameters, such as Hartmann number (Ha), Brinkmann number (Br), radiation parameter (Rn), and flow rate, have been prepared in order to capture the physical behavior of these parameters. The main goal (i.e., the minimizing of entropy generation) of the second law of thermodynamics can be achieved by decreasing the magnitude of Br, Ha and ${\Lambda}$ parameters.

Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.201-220
    • /
    • 2016
  • A general model of equations of the two-temperature theory of generalized thermoelasticity is applied to study the wave propagation in a fiber-reinforced magneto-thermoelastic medium in the context of the three-phase-lag model and Green-Naghdi theory without energy dissipation. The material is a homogeneous isotropic elastic half-space. The exact expression of the displacement components, force stresses, thermodynamic temperature and conductive temperature is obtained by using normal mode analysis. The variations of the considered variables with the horizontal distance are illustrated graphically. Comparisons are made with the results of the two theories in the absence and presence of a magnetic field as well as a two-temperature parameter. A comparison is also made between the results of the two theories in the absence and presence of reinforcement.

Maximum Power Control of IPMSM Considering Nonlinear Cross-Magnetization Effects

  • Kim, Youn-Hyun;Kim, Won-Kyu;Kim, Sol
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.940-947
    • /
    • 2012
  • Interior permanent magnet synchronous motor is widening its application compared to other AC machines because of magnetic and reluctance torque. Despite of the advantages, improving control performance with parameter nonlinearity consideration is crucial during the field weakening control. This paper shows a maximum power control method at the field weakening region that considers d, q inductance's nonlinearity due to magnetic saturation and d, q mutual inductance. To verify the feasibility of control scheme, FEM simulations and experiments about comparison between linear and nonlinear maximum power control are carried out.

Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes

  • Ebrahimi, Farzad;Dehghan, M.;Seyfi, Ali
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • In this article, wave propagation characteristics in magneto-electro-elastic (MEE) nanotube considering shell model is studied in the framework nonlocal theory. To account for the small-scale effects, the Eringen's nonlocal elasticity theory of is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton's principle. The results of this investigation have been accredited by comparing them of previous studies. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influences of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation responses of MEE nanotube are expressed in detail.