• Title/Summary/Keyword: magnetic field coil

Search Result 568, Processing Time 0.028 seconds

Treatment of Bone Repair by Inductively Magnetic Fields

  • Ahn, Jae-Mok;Lee, Woo-Cheol;Kim, Hee-Chan;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.213-217
    • /
    • 1992
  • An inductively coupled magnetical signal (pulse wave, 0.7 to 60Hz, eighteen volts peak to Peak) that was applied non-invasively on the skin surface overlying the approximate site(measure position). In the group with unipolar pulse signal currents produced smaller than in the group with bipolar pulse signal. The signal was transmitted to the active coil, including a time-varying magnetic field: this in turn induced a the-varying electrical field in the field in the bone. It is very important to determine system parameters due to treatment time(healing) and the simplicity. This paper investigation was designed to compare the relative effects of pulsed unipolar currents with the effects of an identical pulsed bipolar currents. Since Inductive coupling is non-invasive and involves portable equipment, it is easy to apply and requires precise localization, it has distinct advantages and field characteristics along the bone for each different signal.

  • PDF

Swimming Microrobot Actuated by External Magnetic Field (전자기 구동 유영 마이크로로봇)

  • Byun, Dong-Hak;Kim, Jun-Young;Baek, Seung-Man;Choi, Hyun-Chul;Park, Jong-Oh;Park, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1300-1305
    • /
    • 2009
  • The various electromagnetic based actuation(EMA) methods have been proposed for actuating microrobot. The advantage of EMA is that it can provide wireless driving to microrobot. In this reason a lot of researchers have been focusing on the EMA driven microrobot. This paper proposed a swimming microrobot driven by external alternating magnet field which is generated by two pairs of Helmholtz coils. The microrobot has a fish-like shape and consists of a buoyant robot body, a permanent magnet, and a fin. The fin is directly linked to the permanent magnet and the magnet is swung by the alternating magnet field, which makes the propulsion and steering power of the robot. In this paper, firstly, we designed the locomotive mechanism of the microrobot boy EMA. Secondly, we set up the control system. Finally, we demonstrated the swimming robot and evaluated the performance of the microrobot by the experiments.

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

Characteristic Analysis of Permanent Magnet Linear Synchronous Motor with Halbach Array and Iron Core (영구 자석 Halbach 배열 가동자로 구성된 철심형 직선 영구자석 동기 전동기의 특성 해석)

  • Jang, Seok-Myeong;You, Dae-Joon;Lee, Sung-Ho;Jang, Won-Bum;Kwon, Jeong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.72-74
    • /
    • 2003
  • This paper presents a design and analysis solutions for the general class of iron-cored permanent magnet linear synchronous motor with Halbach (PMLSM). In our design and analysis, rotor consisting of permanent magnets rotor and slot less iron-cored coil stator are treated in a uniform way via vector potential. For one such motor structure, we give analytical formulas for its magnetic field, back electromotive force, inductance of winding coil, and trust force. We also provide performance comparisons of three types according to iron-cored and PM array.

  • PDF

Analysis of Spin Valve Tunneling Magnetoresistance Sensor for Eddy Current Nondestructive Testing

  • Kim, Dong-Young;Yoon, Seok-Soo;Lee, Sang-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.524-530
    • /
    • 2008
  • The spin valve tunneling magnetoresistance (SV-TMR) sensor performance is analyzed using Stoner-Wohlfarth model for the detection of eddy current signals in nondestructive testing applications. The SV-TMR response in terms of the applied AC magnetic field dominantly generates the second harmonic amplitude in hard axis direction. The second harmonic eddy current signal detection using SV-TMR sensor shows higher performance than that of the coil sensor at lower frequencies. The SV-TMR sensor with high sensitivity gives a good solution to improve the low frequency performance in comparison with the inductive coil sensors. Therefore, the low frequency eddy current techniques based on SV-TMR sensors are specially useful in the detection of hidden defects, and it can be applied to detect the deeply embedded flaws or discontinuities in the conductive materials.

3-Dimensional Design of Gradient Coils for Magnetic Resonance Imaging (자기공명영상촬영용 경사자계코일의 3차원설계)

  • Ryu, Yeun-Chul;Hyun, Jung-Ho;Lee, Heung-K.;Oh, Chang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.235-237
    • /
    • 2006
  • In this paper, the previous 2-D gradient coil design method using loop current elements is extended to 3-D or multi-layer structures which is useful for various MRI applications including MR microscopic imaging where relatively large space may be available for the implementation of the gradient coils. Either the power consumption or the stored energy (thus, inductance), or the combination of the two can be minimized with a set of chosen target field constraints. Complete 3-D design equations for the optimization as well as inductance or resistance calculation are derived. An effective coil shape correction method for a curved current pattern is also developed. The design method can also be easily extended to the active shielding structure.

  • PDF

Design and Performance Test of the Force Motor for Direct Drive-type Pneumatic Servo Valve (직동식 공압서보밸브의 Force Motor 설계 및 성능시험)

  • 이원희;김동수;박상운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.836-839
    • /
    • 2003
  • A pneumatic servo valve which is widely applied in industrial field. And It is consist of force motor, spool & sleeve and servo controller. In this study. we developed the force motor which is consume to low power for a pneumatic servo valve. We could reduce the number of turn of the solenoid by using ferromagnetic permanent magnet and took different direction of each other using one coil instead of two coil. we modeled a system consisting of various electro-mechanical subsystems. The appropriateness of the model was verified by simulation. The simulation model resolved the motion of spool, the winding current and the magnetic force. Also, we calculated the displacement and velocity of the spool, flux contour line, b vector. flux density. flux linkage, back EMF etc.

  • PDF

Finite Element Method employing Localized Functional for analyzing The Axi-symmetric Induction Heating System (축대칭 유도가열기의 해석을 위한 국부범함수를 이용한 유한요소법)

  • Baek, Seung-Kook;Cheon, Chang-Yul;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.18-20
    • /
    • 1994
  • The axisymmetric variational approach employing localized functional is applied to calculate the leakage magnetic field from an induction heating system consisting of an exciting coil and a conducting circular plate. The open boundary is treated by introducing the exterior functional which is representated using the spherical fundamental solutions. For the application to the voltags source problems, the currents on the exciting coil is treated as unknowns. Our results are compared with the previous results, which showed good agreements.

  • PDF

Springless LOA Driver Development with Consideration of Push/pull effect (Push/pull 효과를 고려한 Springless LOA 구동드라이버 개발)

  • Jang, S.M.;Kweon, C.;Jeong, S.S.;Sung, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.653-655
    • /
    • 2000
  • A moving-coil-type linear oscillatory actuator(LOA) consists of the NdFeB permanent magnets with high specific energy as the stator. a coil-wrapped nonmagnetic hollow rectangular structure. LOA system have the push/pull effect caused by the unbalanced magnetic field. In order to eliminate the unbalanced thrust, we propose the control algorithm and construct the LOA driver. As a results, we obtain the balanced oscillating thrust.

  • PDF

Design and Characteristic Analysis of a Moving Magnet Type LDM (가동자석형 LDM의 설계 및 특성 해석)

  • Jang, S.M.;Jeong, S.S.;Yoon, I..K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.18-20
    • /
    • 1999
  • In the industrial field the necessity of the linear motion is increasing. We selected a moving magnet coreless type LDM, which have the advantages, such as long stoke, brushless, no cogging force. Actually, the design is accomplished using FEM analysis for the basic configuration of a magnetic circuit, and characteristic equations for coil design. In the course of design we have estimated airgap flux density and thrust.

  • PDF