• Title/Summary/Keyword: magnetic field coil

Search Result 568, Processing Time 0.024 seconds

Design of Z-directional gradient coil to improve gradient linearity for the nuclear magnetic resonace imaging(NMRI) (경사자장의 선형성 향상을 위한 핵자기공명 영상용 Z-방향 경사자기장 코일 설계)

  • Ko, Rock-Kil;Lee, Dong-Hoon;Baek, Seung-Tae;Kim, Song-Hui;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.235-237
    • /
    • 1998
  • Gradient coil offers the spatial informations of sample or patient in Nuclear Magnetic Resonance Imaging(NMRI) and its gradient field linearity over the field of view(FOV) has many influence on the MR imaging. Accurate and good quality MR imaging can be acquired by the high gradient field linearity over the FOV. So it is an important part to design of gradient coil with good linearity in the wide imaging range. Usually, Z-directional gradient field is generated by using the Helmholtz type coil which is consisted of one-pair loop with anti-current path. It gets less about 40% linearity of the diameter spherical volume(DSV). In this study, we calculated optimized geometrical parameters of two-pair loop system to cancel odd terms up to $B_7$ included effectively. we also analyzed and compared the gradient field distribution and linearity of the common Helmholtz coil with them of the two-pair loop system.

  • PDF

Design of Magneto-Rheological Clutch Coil Operation Unit using Electro Magnetic Field Analysis (전자기장 해석을 이용한 자기점성 유체 클러치 코일 작동부 설계)

  • Song, Jun-Han;Choi, Dook-Hwan;Chun, Chong-Keun;Kwon, Young-Chul;Lee, Tae-Haeng
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.22-28
    • /
    • 2009
  • Recently, there has been an active study about smart fluid to control the vibration, in which MR fluid is evaluated as most efficient because it can generate different bonding forces based on the intensity of the external magnetic fields. This paper attempts to find a mechanism that, under limited conditions during a clutch production that uses such dynamic characteristic, defects the maximum intensity of electromagnetism. Using the finite element analysis program, we predicted a change within the bonding force of the MR fluid occurring inside the clutch when it is subjected to an increased electric current. In addition, we analyzed the change in the magnetic intensity when the coil comprising the coil control center is switched to multiple lines from the standard single line, to find a mechanism that can maximize the effect. Based on this analysis, we developed the clutch and tested its function, hoping to widen future MR fluid's range of application.

Analysis of Endcap Effect for MRI Birdcage RF Coil by FDTD Method (FDTD 방법을 이용한 MRI Birdcage RF Coil의 Endcap 효과 분석)

  • Chung Sung-Taek;Park Bu-Sik;Shin Yoon-Mi;Kwak June-Sik;Cho Jong-Woon;Kim Kyoung-Nam
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • Purpose : B1 field of birdcage RF (radiofrequency) coil that is used most for brain imaging in magnetic resonance imaging (MRI) decreases toward endring from the coil center. We investigated how much RE B1 homogeneity effect the endcap shield brings form the coil center as it towards to endcap region. Materials and Methods : We compared RF B1 field distribution by each finite difference time domain (EDTD) simulations for lowpass, highpass and hybrid birdcage RF coils. We selected the highpass birdcage RF coil that was the highest RF B1 field condition as simulation result, and studied how much RF B1 homogeneity effect was occurred when endcap shield was applied to endring area. Results : B1 field of the highpass birdcage RF coil was higher than other birdcage RF coil types as simulation result. However, the RF B1 homogeneity was lower than other coil types. RE B1 field of highpass birdcage RF coil with endcap shield is similar with RF B1 field of hybrid birdcage RF coil and the overall RE B1 homogeneity in sagittal direction was better. Conclusion In this paper, proposed method can apply improving RF B1 homogeneity of RF coil in clinical examination.

  • PDF

Design of Field Coil for High Temperature Superconducting motor considering Operating Current (운전전류를 고려한 고온초전도 모터용 계자코일의 설계)

  • 조영식;서무교;백승규;김석환;손명환;권영길;홍정표
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.315-317
    • /
    • 2002
  • The value of I$_{c}$(critical current) in HTS (High Temperature Superconducting) tape has a great influence on B(equation omitted) (magnetic field amplitude applied perpendicular to the tape surface). Therefore, I$_{c}$ of HTS magnet is determined by not only operating temperature but also the B(equation omitted). In shape design of field coil for the HTS motor, a method to reduce the B(equation omitted) and to determine operating current should be considered in order to optimal design. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain operating current of HTS motor by using analytical method. And also this paper discusses the operating current of 100hp class HTS motor by using I$_{c}$-B(equation omitted) curve.curve.

  • PDF

Comparative Study of Coupling Factors for Assessment of Low-Frequency Magnetic Field Exposure

  • Shim, Jae-Hoon;Choi, Min-Soo;Jung, Kyu-Jin;Kwon, Jong-Hwa;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.516-523
    • /
    • 2016
  • In this paper, coupling factors are calculated based on numerical analysis in order to assess various non-uniform low-frequency magnetic field exposure situations. Two types of non-uniform magnetic field sources are considered; circular coil and parallel wires with balanced currents. For each magnetic field source, source current values are determined so that reference magnetic field magnitude can be measured at the specified point on the human model. Various exposure situations are investigated by changing parameters such as the distance between source and human model, radius of circular coil, and the gap between parallel wires. For equivalent human models, prolate spheroid model and simplified human model from IEC 62311 standard are used. The calculated coupling factor values are compared with those obtained by 2D uniform disk human model, and the dependence of coupling factor on the choice of equivalent human model is analyzed.

The Analysis of Current Limiting Performance in a High-$T_c$ Superconductor using Flux-Lock Concepts

  • 임성훈;최효상;김영순;이성룡;한병성
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.229-234
    • /
    • 2002
  • In this paper, we analyzed the fault current performance in a $high-T_{c}$ superconductor(HTS) which was installed on flux-lock reactor with an external magnetic field coil covering the HTS. In this HTS fault current limiter using flux-lock concepts, the initial limiting current level can be controlled by adjusting the inductance of the coils. Furthermore, the current limiting characteristics of $high-T_{c}$ superconducting FCL can be improved by applying the external magnetic field into the $high-T_{c}$ superconductor. This paper discusses current limiting performance according to the inductance of the coil 1 in two cases with ac magnetic field coil or not and suggests the methods to improve the current limiting factor $P_{limit}$, which is defined as the ratio of the limited current $I_{FCL}$ at the current limiting phase to the prospective short -circuit current $I_{PSC}$.TEX> PSC/.

  • PDF

Study on the 2G High Temperature Superconducting Coil for Large Scale Superconducting Magnetic Energy Storage Systems (대용량 에너지 저장장치용 2세대 고온 초전도 코일의 특성해석)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • Large scale superconducting magnetic energy storage (SMES) system requires very high magnetic energy density in its superconducting coils to enhance the energy capacity and efficiency of the system. The recent high temperature superconducting (HTS) conductors, so called 2G conductors, show very good performance under very high magnetic field so that they seem to be perfect materials for the large scale SMES coils. A general shape of the coil system with the 2G HTS conductor has been a tor oid, because the magnetic field applied perpendicularly to the surface of the 2G HTS conductor could be minimized in this shape of coil. However, a toroid coil requires a 3-dimensional computation to acquire the characteristics of its critical current density - magnetic field relations which needs very complicated numerical calculation, very high computer specification, and long calculation time. In this paper, we suggested an analytic and statistical calculation method to acquire the maximum magnetic flux density applied perpendicularly to the surface of the 2G HTS conductor and the stored energy in the toroid coil system. Although the result with this method includes some errors but we could reduce these errors within 5 percent to get a reasonable estimation of the important parameters for design process of the HTS toroid coil system. As a result, the calculation time by the suggested method could be reduced to 0.1 percent of that by the 3-dimensional numerical calculation.

Increment of HTS Magnet's Central Magnetic Field Made of Pancake Windings by Using Separate Sources (여러개의 전원을 이용한 팬케이크 권선으로 구성된 고온초전도 마그넷의 중심자장 증가)

  • Lee, Kwang-Youn;Cha, Guee-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1577-1583
    • /
    • 2007
  • The development of a magnet for very high magnetic field is usually envisioned with the use of an HTS insert coil. Pancake windings have been commonly used for the insert coil. All pancake windings have been connected in series and excited by a single power source. In that case, it is inevitable to operate some of the pancake windings well below their critical current densities. To increase the central magnetic field of the magnet, this paper proposed a new excitation method of the pancake windings by exciting the pancakes windings independently using multiple power sources. Results of the calculation show proposed method increases the central magnetic field of the magnet which consisted of 8 pancake windings by 17% comparing with excitation by using a single power source.

Performance Evaluation of Low Frequency Magnetic Field Shielding by Eddy-Current (와전류에 의한 저주파 자기장 차폐 성능 평가)

  • Choi, Hak-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.124-128
    • /
    • 2010
  • In this paper, the shielding effectiveness of aluminum shielded room with using eddy-current is calculated and measured after fabricated. The size and thickness of shielded room are decided as $2.4{\times}2.4{\times}2.4[m^3]$ and 12[mm] after AC shielding characteristics by eddy-current of conductive materials is analyzed. To verify the shielding effectiveness, a rectangular helmholtz coil is fabricated to generate magnetic field of 1.37[${\mu}T$] and measured magnetic field inside shielding room for 0.01~10[Hz]. According to calculations and measurements, AC Shielding effectiveness by eddy-current in aluminum is very small for 0.01~2[Hz] and 5 times to 11 times for 5~10[Hz].

Comparison of Electrical Characteristics of The Solenoid Coils made of YBCO wire and BSCCO wire (BSCCO 선재와 YBCO 선재의 솔레노이드 코일의 전기적 특성 비교)

  • Lim, H.;Lee, D.M.;Lee, Ji-Kwang;Choi, H.;Cha, G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.43-46
    • /
    • 2007
  • Solenoid coil is one of the commonly used one in superconducting power machines because it can produce uniform magnetic field at the center of the coil. Most of the AC loss in a solenoid coil is magnetization loss which is generated by the perpendicular magnetic field. This paper compares the electrical characteristics of two solenoid coils made of YBCO wire and BSCCO wire. We made and tested the BSCCO solenoid coil and YBCO solenoid coil which had the same number of turns and inner diameter. Number of turns and inner diameter of both coils were 30 turns and 10cm, respectively. AC loss of both coils were calculated by using the finite element method. Result shows that AC loss of YBCO coil was about 1/7 of that of the BSCCO coil when the current was 40A.