• Title/Summary/Keyword: magnetic domain refinement

Search Result 8, Processing Time 0.028 seconds

Study on the Core Loss Improvement of SiFe Plate in Relation with Laser Pulse Width in the Laser Scribing (레이저 스크라이빙에 있어서 레이저의 펄스폭에 따른 규소강판의 코어손실 개선 연구)

  • Ahn, Seung-Joon;Park, Chul-Geun;Ahn, Seong-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.320-324
    • /
    • 2005
  • The core loss of $3\%$ SiFe is strongly dependent on silicon content, impurities, permeability, and domain structure of the SiFe. Domain refining has been proved to be very good method for reduction of core loss in high permeability grain oriented SiFe, and laser scribing is well-blown as an effective and industrially important method of domain refinement. In this work, magnetic domain refinement has been carried out by using a pulsed Nd : YAG laser, and the core losses have been measured and analyzed to and optimal parameters of the laser treatment. The laser hem was focused with a spot size of $100{\mu}m$ and pulse energy of 10${\~}$35mJ and the lines were scribed with a period of ${\~}$5mm. The core loss was improved up to $17\%$ with 30 ns-Nd : YAG laser beam in $3\%$ SiFe.

Development of Electrical Steel by Laser Magnetic Domain Refinement for Applying to Transformers of High Energy Efficiency (고효율 변압기용 레이저자구 전기강판 개발)

  • Kwon, Oh-Yeoul;Cha, Sang-Yun;Ha, Kyung-Ho;Kim, Ji-Hyun;Kim, Jae-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.625-626
    • /
    • 2008
  • The magnetic domain-refining techniques such as ball scratching, laser irradiation and plasma have been developed to reduce the domain wall spacing and thus iron losses in Fe-3%Si grain-oriented silicon steels. In view point of magnetic properties, it was supposed that the locally residual stresses change the magnetoelastic energy of the material and thus the spacing between $180^{\circ}$ domain walls decreases in order to reduce the magnetostatic energy. The effect of laser irradiation on iron loss and magnetostriction reduction for Fe-3%Si grain-oriented steel were investigated. Since the local tensile stresses were induced at the surface of Fe-3%Si steel by the laser irradiation, the minimum iron loss caused by reducing eddy current loss was obtained in spiete of the decrease of permeability by hindering eddy current loss was obtained in spite of the decrease of permeability by hindering the domain wall movement around the induced stress field. Furthermore, the laser treated 3%Si steel has lower magnetostriction as compared to non laser-treated steel and is less sensitive to applying pre-stresses due to the volume reduction of $90^{\circ}$ domain in materials.

  • PDF

Microstructure and Magnetic Properties of Nanocomposite Sm2Fe15Ga2Cx/α-Fe Permanent Magnets

  • Cheng, Zhao-hua
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2003
  • In our previous work, microstructure and magnetic properties of two-phase exchange-coupled $Sm_2Fe_{15}Ga_2C_{x}$/$\alpha$-Fe nanocomposites have been investigated by means of x-ray diffraction, transmission electron microscopy and magnetization measurement. It was found the exchange coupling between the magnetically hard phase $Sm_2Fe_{15}Ga_2C_{x}$ and the magnetically soft one ${\alpha}$-Fe results in an enhancement of the remanence. The sizes of crystallites of both phases are, however much larger than the Block domain-wall width of the magnetically hard phase. This microstructure gives rise to a concave demagnetization curve and consequently reduces the maximum energy Product. In order to improve their magnetic properties, a few Percent of Zr, which may be effective to refine the microstructure through rapid quenching, was introduced into the nanocomposites. The addition of Zr was found to improve the magnetic properties significantly, Under optimum heat-treatment conditions, the remanence, coercivity and maximum energy Product increase from 0.65 T, 0.48 T and 50 kJ/$m^{3}$ for the Zr-free sample to 0.72 T, 0.77 T and 71.6 kJ/$m^{3}$ for the 1 at.% Zr-containing one, respectively, The improvements of magnetic properties are due to the refinement of microstructure by the addition of Zr.

The Magnetic Properties of FeBSiNb Alloy Ribbons with High Glass forming Ability (고 비정질 형성능을 가진 FeBSiNb 합금 리본의 자기적 특성)

  • Noh, Tae-Hwan;Kim, Gu-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.154-159
    • /
    • 2002
  • Amorphous FeBSiNb alloy ribbons having bulk glass forming ability and high saturation magnetic flux density were produced by single-roller melt spinning apparatus in the thickness range of 22∼102㎛. With the increase of thickness, the coercive force and squareness ratio decreased, while maximum permeability and AC permeability increased. However electrical resistivity was almost constant. Furthermore refined and complex magnetic domain structure was observed in thicker ribbons owing to the change in internal magnetic anisotropy. For the alloy with the thickness of 81㎛, small coercive force of 24 mOe and high effective permeability of 12,000 at 1㎑ were obtained, those are considered to be better comparing to the conventional soft magnetic amorphous alloys (∼20 ㎛). The good soft magnetic properties of the thick FeBSiNb amorphous alloys were attributed to the decrease in surface pinning effect during wall motion, appearance of perpendicular anisotropy and resulted domain refinement.

Effects of Heat Treatment on Choke Core Properties in $Fe_{78}Si_9B_{13}$ Amorphous Alloys ($Fe_{78}Si_9B_{13}$ 비정질 합금의 초크 코어 특성에 미치는 열처리 효과)

  • 노태환;장완희
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.191-195
    • /
    • 2000
  • With the object of developing a non-gap choke core, effects of annealing in oxygen atmosphere on magnetic properties for Fe$_{78}$Si$_{9}$B$_{13}$ amorphous alloy were investigated. After annealing for 2 hrs at 440 $^{\circ}C$, optimum magnetic properties for choke core were obtained, where the effective permeability was 180 and was almost constant up to several MHz, and the decrease in permeability upon large DC bias current of 12 A or DC bias magnetic field of 8,000 A/m was very little. Moreover the AC magnetic loss was very low as compared to the conventional choke cores. Upon the optimum annealing, the magnetic hysteresis loop was inclined accompanying the increase of coercive force and the appearance of fine crystallites of $\alpha$-Fe phase. The good choke core properties was considered to be due to the suppression of domain boundary motion and domain refinement by the crystallites.

  • PDF

The Magnetic Properties of $Fe_{87}Zr_{7}B_{5}Ag_{1}$(at.%) Amorphous Alloy ($Fe_{87}Zr_{7}B_{5}Ag_{1}$ 비정질합금의 연자기 특성)

  • 김병걸;송재성;김현식;오영우
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.8-14
    • /
    • 1995
  • The magnetic properties of an $Fe_{87}Zr_{7}B_{5}Ag_{1}$(at.%) amorphous alloy have been investigated as a function of annealing temperatures to clarify its application potential as a core material for high-frequency use by adding a small amount of insoluble element of Ag. A new excellent soft magnetic material was developed. The amorphous alloy produced by relatively low temperature annealing at $T_{a}=400^{\circ}C$ exhibited very high initial permeability$(\mu_{i})$ of 288,000 at 1kHz and 2mOe, very low coercivity$(H_{c})$ of 15mOe and low core loss$(W_{c})$ of 50W/kg at 100kHz and 1,000G which is comparable with Co-based amorphous alloys, respectively. It is notable that the values obtained in the present study are the best magnetic properties among various kinds of Fe-based soft amorphous materials reported up to date. The reasons for the achievement of good soft magnetic properties are presumably due to the homogeneous formation of very fine $\alpha$-Fe clusters with the size of 2~3nm in an amorphous matrix, which can be deduced from the increase of resistivity and the TEM observation. The very fine $\alpha$-Fe clusters embedded in an amorphous matrix had a great influence on reduction of magnetostriction and refinement of magnetic domain.

  • PDF

Effect of ECR-Ion Milling on Exchange Biasing in NiO/NiFe Bilayers

  • D.G. Hwang;Lee, S. S.;Lee, K. H.;Lee, K. B.;Park, D. H.;Lee, H. S.
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.23-25
    • /
    • 2000
  • We have investigated the effects of Ar and$O_2$-ion milling on the exchange coupling field ($H_{ex}$) and coercive field ($H_c$) at the interfaces between substrates and NiO/NiFe films, to understand the exchange biasing mechanism. The $O_2$-ion milling was successfully performed by means of the electron cyclotron resonance (ECR) process. We found that the local roughness gradient of the NiO surface increased by $O_2$-ion milling. The ratio of $H_{ex}/H_c$ increased from 0.87 to 1.77, whereas $H_c$ decreased by almost a half as a results of the ion milling. The decrease in $H_c$could be interpreted as due to the refinement of magnetic domain size, which arose from the increase of the local roughness gradient of the NiO surface. The decrease in low $H_c$, and increase in $H_{ex}$ in NiO spin valves by ECR-ion milling are in the right direction far use in magnetoresistance (MR) heads.

  • PDF

A study of the Electron Beam Irradiator for Core-loss reduction of Grain-oriented silicon Steel

  • Kim Min;Yoon Jeong-Phil;Lee Gi-Je;Cha In-Su;Cho Sung-Oh;Lee Byeong-Cheol;Jeong Young-Uk;Yoo Jae-Gwon;Lee Jong-Min
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.93-97
    • /
    • 2001
  • A new compact, low-energy electron beam irradiator has been developed. The core-loss of silicon steels can be reduced by magnetic-domain refinement method. The irradiator was developed for the application of core-loss reduction using the method. The beam energy of the irradiator can be varied from 35 to 80 keV and the maximum current is 3mA. The irradiation area is designed to be $30\times30mm2$ now and will be upgraded to $30\times150mm2$ using a scanning magnet and scanning cone. The electron beam generated from 3 mm diameter LaB6 is extracted to the air for the irradiation of the silicon steels in the air. A special irradiation port was developed for this low-energy irradiator. A havar foil with $4.08{\mu}m$ thickness were used for the window and a cold air-cooling system keeps the foil structure by removing heat at the window. The irradiator system and its operation characteristics will be discussed.

  • PDF