• Title/Summary/Keyword: magnetic compaction

Search Result 61, Processing Time 0.021 seconds

A Study on Magnetic Field Reduction Design Technique around 345 kV Transmission Line with 2-wire Set Passive Loop (2선식 수동루프를 이용한 345[kV] 송전선 주변의 자계저감 설계기법 연구)

  • Kim, Eung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • The controversy over the risk of the human body being affected by electromagnetic fields emitted from 60 Hz power lines continues without end. There are currently no new studies or research progress being made in this direction that is notable, and the number of civil complaints is gradually increasing. The problem is that each study produces different results, among which the effect of exposure to magnetic fields on childhood leukemia is a major one. In Korea, an electrician who was maintaining a 22.9 kV power line died of leukemia, which has recently been recognized as an occupational disease. Methods to reduce magnetic fields from power lines include shielding with wire loops, incorporating split phases and compaction techniques, installing underground power lines, converting to high-voltage direct current (HVDC), and increasing the ground clearance of transmission towers. Depending on whether a separate power supply is needed or not, there are two types of wire loops: passive loop and active loop. Magnetic field reduction is currently done through underground power lines; however, the disadvantage of this process is high construction costs. Installing passive loops, with relatively low construction costs, leads to lower magnetic field reduction rates than installing underground cables and a weakness to not solving the landscape problem. This methodological study aims at designing methods and reducing the effects of 2-wire set loops-the simplest and most practical. Since the method proposed in this study has been designed after analyzing the distribution of complex electromagnetic fields near the expected loop installation location, a practical design can be implemented without the need for any difficult optimization programming.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

Characteristic improvement of soft magnetic composite by improving compaction condition (분말압분 조건 개선에 따른 모터 코어용 연자성체의 특성 향상)

  • Cha, Hyun-Rok;Lee, Kyu-Seok;Yun, Cheol-Ho;Jung, Ta-Euk;Kim, Hyung-Mo;Kim, Jeong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.40-42
    • /
    • 2006
  • 연자성 복합재료는 기존의 철판 대비 기계적, 자기적 특성 떨어지는 것이 사실 이였다. 본 연구에서는 이러한 문제점 개선을 위해서 저점도 윤활제 적용을 통한 빼기 압력 저감 방안을 도출하였다. 연자성체의 고강도화, 우수한 자기적 특성을 얻기 위해서 높은 압력의 성형이 필수적인데 높은 압력으로 성형시 빼기 압력이 높아져서 금형이 파손되는 등 문제점으로 인해 우수한 특성을 얻을 수 없었다. 본 연구에서는 이러한 문제점을 해결하기 위해서 저 점도액체 윤활제, 고점도 액체 윤활제, 고체 윤활제 3가지의 윤활제 특성을 검토 하였다. 또한 저점도 액체 윤활제 적용을 통해서 기존 대비 강도 10%, 철손 10%, 빼기 압력 30%를 저감 하였다.

  • PDF

Compaction and Sintering Characteristics of High Energy Ball Milled Mn-Zn Ferrite Powders

  • Lee, Hyunseung;Rhee, Hoseong;Lee, Sangsoo;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.677-681
    • /
    • 2021
  • The Mn-Zn ferrite powders were prepared by high energy ball milling, then compacted and sintered at various temperatures to assess their sintering behavior and magnetic properties. The initial ferrite powders were spherical in shape with the size of approximately 70 ㎛. After 3 h of ball milling at 300 rpm, aggregated powders ~230 nm in size and composed of ~15 nm nanoparticles were formed. The milled powders had a density of ~70 % when compacted at 490 MPa for 3 min. In the samples subsequently sintered at 1,273 K ~ 1,673 K for 3 h, the MnZnFe2O4 phase was detected. The density of the sintered samples had a tendency to increase with increasing sintering temperature up to 1,473 K, which produced the highest density of 98 %. On the other hand, the sample sintered at 1,373 K had the highest micro-hardness of approximately 610 Hv, which is due to much finer grains.

Effects of the Powder Preparation Method on the Magnetic Properties of Fe-based Amorphous Alloy Powder Cores (철계 비정질 합금 분말코아의 자기적 특성에 미치는 분말 제조방식의 영향)

  • Noh, T.H.;Choi, H.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.191-197
    • /
    • 2005
  • In the fabrication process of Fe-based amorphous alloy powder cores by pulverization of the melt-spun ribbons and cold compaction, the effects of powder preparation method on the magnetic & electric properties, powder shapes and microstructure of cores have been investigated. The powder cores made by using rotor mill showed low effective permeability as compared to the cores prepared by ball milling. However the frequency dependence and quality factor properties were superior in the case of rotor-milling. Further the powders prepared by rotor mill had homogeneous and round shapes through strong shearing in the sieve ring, while the ball milled powders were inhomogeneous and relatively small. The lower permeability of the powder cores fabricated with rotor mill was considered to be due to the high internal stress occurred by very intensive shearing. Moreover the powder cores produced by rotor-milling showed lower core loss and good frequency dependence of effective permeability possibly due to the higher electrical insulation between magnetic particles. The dc bias property of the powder cores made by rotor-milling was better than the one by ball-milling.

Geophysical Investigation of the change of geological environment of the Nanjido Landfill due to the Stabilization Process (난지도 매립장의 안정화에 따른 지질환경 변화 조사를 위한 지구물리 탐사)

  • Lee, Kie-Hwa;Kwon, Byung-Doo;Rim, Hyoung-Rae;Yang, Jun-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.113-126
    • /
    • 2000
  • We have conducted multiple geophysical surveys to investigate the geoenvironmental change of the Nanjido Landfill due to the stabilization process. Geophyscial surveys are comprized of gravity, magnetic, dipole-dipole electrical and SP methods. Due to the field conditions, surveys were conducted on the top surface of the landfill no.2 and southern border areas in front of landfills. The gravity anomalies obtained on the top surface of the landfill no.2 in 1999 show that the gradient of the anomaly on the central area is decreasing in comparison with that observed four years ago. The complexity of magnetic anomaly pattern it also decreasing. These facts suggest that the stabilization work of the Nanjido landfill makes some progress by compaction process due to repetitive subsidence and refilling. The dipole-dipole electrical resistivity and SP data obtained on the outside of the waterproof wall at the landfill no.1 were severely affected by unsatisfactory surface conditions. On the other hand, the dipole-dipole electrical resistivity profiles obtained on the inside and outside parts of the waterproof wall at the landfill no.2 show the blocking effect of leachate flow by the waterproof wall. Few SP anomalies are observed on the top and side surfaces of the landfill no.2, but SP anomalies obtained on the base area inside the waterproof wall strongly reflect the effect of leachate collecting wells.

  • PDF

자기펄스압축성형법 및 방전 플라즈마 소결법의 연속공정을 이용한 $95%Bi_2Te_3-5%Bi_2Se_3$ 소결체제조 및 열전특성평가

  • Lee, Cheol-Hui;Kim, Hyo-Seop;Kim, Taek-Su;Gu, Ja-Myeong;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.48.2-48.2
    • /
    • 2011
  • 열전재료는 열과 전기에너지의 상호 변환이 가능한 재료로 이를 이용한 응용제품의 개발이 크게 주목을 받고 있으며, 특히 $Bi_2Te_3$계 합금의 경우 상온에서 가장 우수한 성능지수를 가지는 재료로 많은 연구가 진행되고 있다. 그러나 기존의 $Bi_2Te_3$계 합금은 일방향응고법으로 제조되어 많은 시간과 비용을 필요로 하고, 특히 C축의 Van der Waals 결합으로 인해 기계적 강도가 약하다는 단점이 있었다. 최근 분말야금법을 이용하여 기계적강도를 높이고, 격자산란에 의한 열전도도의 감소로 성능지수를 높일수 있는 방법들이 제시되고 있다. 본 연구에서는 급속응고공정인 가스분무법을 이용하여 n-type의 $95%Bi_2Te_3-5%Bi_2Se_3$분말을 제조하였고, 이 재료의 경우 성형조건에 따라 조직이 쉽게 변하기 때문에 이를 제어하기 위해 단시간동안 고압으로 성형가능한 자기펄스압축성형법(Magnetic Pulsed Compaction)을 이용하여 성형체를 제조하였다. 제조된 성형체는 밀도를 증가시키고 결정립성장을 억제시킬수 있는 방전플라즈마소결법(Spark Plasma Sintering)을 이용하여 소결체로 제조되었으며, 각각의 공정이 열전성능에 미치는 영향을 고찰하였다. OM (Optical Microscope) 및 SEM (Scaning Electric Microscope)을 이용하여 미세구조를 관찰하였고 XRD (X-Ray Diffraction)를 이용하여 상의 변화를 분석하였으며, 상온에서 경도를 측정함으로서 공정조건에 따른 기계적강도를 비교하였다. Seebeck계수는 시편의 양단에 온도차를 주어 발생하는 기전압을 측정하여 계산하였고, 전기비저항은 4point probe방법으로 측정하였다. 전하이동도 및 전하농도는 Hall측정으로부터 구하였고 열전도도를 측정하여 종합적인 열전성능을 평가하였다.

  • PDF

Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM) (고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동)

  • Song, Joon-Woo;Kim, Hyo-Seob;Kim, Hong-Moule;Kim, Taek-Soo;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

Mechanical Alloying and Combined Process of in-situ and ex-situ to Fabricate the ex-situ C-doped $MgB_2$ Wire (기계적 합금화 및 in-situ와 ex-situ의 혼합공정을 통한 C 도핑된 ex-situ $MgB_2$ 선재 제조)

  • Hwang, Soo-Min;Lee, Chang-Min;Lim, Jun-Hyung;Choi, Jun-Hyuk;Park, Jin-Hyun;Joo, Jin-Ho;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 2009
  • We successfully fabricated C-doped ex-situ $MgB_2$ wires using two different methods such as mechanical alloying(MA) and combined process(CP) of in-situ and ex-situ. In the MA, the precursor powder was prepared with a mixture of $MgB_2$ and 1 at% C powders by planetary ball milling for 0-100 h. In the CP, on the other hand, C-doped $MgB_2$ powder was prepared with Mg, B, and C powders by in-situ process via compaction, sintering, and crushing. The powders prepared by two methods were loaded into Fe tube and then the assemblages were drawn by a conventional powder-in-tube technique. The MA treatment of C-added $MgB_2$ decreased the particles/grains size and resulted in C-doping into $MgB_2$ after sintering, improving the critical current density($J_c$) in high external magnetic field. For the C-doped $MgB_2$ wire by MA for 25 h, the $J_c$ was $4.1{\times}10^3A/cm^2$ at 5 K and 6.4 T, which was 5.9 times higher than that of pure and untreated $MgB_2$ wire. The CP also provided C-doping into $MgB_2$ and improved the $J_c$ in high magnetic field; the C-doped $MgB_2$ wire fabricated by CP exhibited a $J_c$ being 2.3 times higher than that of the ex-situ wire used commercial $MgB_2$ powder at 5 K and 6.0 T($2.7{\times}10^3A/cm^2\;vs.\;1.2{\times}10^3A/cm^2$).

  • PDF

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF