• Title/Summary/Keyword: magnet design method

Search Result 638, Processing Time 0.034 seconds

Rotor sleeve and Stator Shape Design of High Speed Permanent Magnet Synchronous Motor for Loss Reduction (손실 저감을 위한 초고속 영구자석 동기전동기의 회전자 슬리브와 고정자 형상 설계)

  • Jang, Seok-Myeong;Ahn, Ji-Hun;Ko, Kyoung-Jin;Cho, Han-Wook;Lee, Yong-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1073-1074
    • /
    • 2011
  • The loss is most important problems for the practical applications of permanent magnet synchronous motor(PMSM). In this paper, rotor sleeve and stator shape design of high speed permanent magnet motor for loss reduction. First, this paper found optimum sleeve thickness for calculation eddy current loss on the basis of analytical method, because eddy current is influenced by conductivity of material and area. Then, stator shape design is changed as maintain same slot area for reducing stator core loss. Finally, this paper compared analytical result with optimum sleeve thickness obtained from finite element(FE) method, and stator core loss is calculated from FE method.

  • PDF

Design for the Improvement of Force Characteristic in Controlled-PM LSM Maglev Carrier by FEM (유한요소법을 이용한 제어 영구자석형 선형동기전도기의 추력특성 개선을 위한 설계)

  • Chun, Yon-Do;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.214-220
    • /
    • 2001
  • This paper presents the design schemes for the improvement of force characteristics in a controlled permanent magnet liner synchronous motor (Controlled-PM LSM). The dependence of motor performance on the various design schemes, such as the slot shapes, the magnetization patterns of permanent magnet and the skewing, has been investigated in detail by using finite element method (FEM). The analysis results are verified by the experiment that is performed by a testing machine. From this study, it is known that the skewing of the magnet is the most efficient method in the aspects of detent force reduction and higher force density.

  • PDF

The design of high-capacity BLDC motor with maximum torque in low speed (저속영역에서 최대 토크 발생이 가능한 대용량 BLDC 모터의 설계)

  • Cho S.H.;Kim C.U.;Bin J.G.;Cho S.E.;Choi C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.824-827
    • /
    • 2003
  • Recently, Development of Rare Earth Permanent magnet with the high remanence, high coercivity allow the design of brushless motors with very high efficiency over a wide speed range. Cogging torque is produced in a permanent magnet by magnetic attraction between the rotor mounted permanent magnet and the stator teeth. It is an undesired effect that contributes to the machines output ripple, vibration, and noise. This cogging torque can be reduced by variation of magnet arc length, airgap length, magnet thickness, shifting the magnetic pole and varying the radial shoe depth and etc. In this paper, Some airgap length and magnet arc that reduce cogging torque are found by FEM(Finite element method). The SPM type of high-capacity BLDC motor is optimized as a sample model.

  • PDF

A Study on the Characteristics in Single-Phase Line-Start Permanent Magnet Moter (단상 유도형 동기 전동기(LSPM)의 특성해석에 관한 연구)

  • Jung, Dae-Sung;Kim, Seung-Ju;Lee, Jin-Hun;Choi, Jae-Hak;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2007
  • Electric motor efficient improvement from home appliance field is important to the effect reducing the energy consumption. But the electric motor design/analysis technology is still insufficient. Specially the electric motor design/analysis technology of satisfying characteristic of both the induction motor and the synchronous motor such as Line start permanent motor. Therefore the electric motor design/analysis technology is urgently demanded reliability. This paper proposes the sing1e-phase line-start permanent magnet motor to develop the motor it with be able to alternate the sing-phase induction motor it is a refrigerator compressor motor. The sing-phase induction motor is analyzed in the steady state. And we have a certification test to compare our single-phase line-start permanent magnet motor with the sing-phase induction motor. In order to improve the performance, the stator of the single-phase line-start permanent magnet motor is same as the stator of the sing-phase induction motor and changes the rotor form and has the permanent magnet. It used the Finite Element Method(FEM) which is widely used with electronic-magnetic field numerical analysis method.

Effect of Number of Turns of Pancake Windings on Central Magnetic Field of the HTS Magnet (팬케이크 권선의 권선수가 고온초전도 마그넷의 중심자장에 미치는 영향)

  • Kang, Myung-Hun;Lee, Kwang-Youn;Lee, Yong-Seok;Cha, Guee-Soo;Lee, Hee-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.107-109
    • /
    • 2007
  • Pancake windings have merits that are easier to make high field magnets and replace windings when an accident happens and windings are aged. The current of the whole magnet consisted of windings connected in series was limited by the minimum current of the top and bottom pancake windings where maximum perpendicular magnetic field was applied. This paper propose a optimal design of a HTS magnet excited by a single source, where evolution strategy was adopted for optimal design algorithm. A magnet consisted of 8 BSCCO pancakes was chosen to prove the effectiveness of this optimal design method. Magnetic field at the center of a magnet was chosen as the object function and it was used maximized. Results of the optimal design shows that the increment of the number of turns of the pancake winding make the magnetic field of the center of the magnet increase but the current of the winding decrease for the larger perpendicular magnetic field.

  • PDF

Field Circuit Coupling Optimization Design of the Main Electromagnetic Parameters of Permanent Magnet Synchronous Motor

  • Zhou, Guang-Xu;Tang, Ren-Yuan;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The electromagnetic parameters of a permanent magnet synchronous motor (PMSM) such as the open load permanent magnet flux, d axis reactance $X_d$, and q axis reactance $X_q$, are most essential to the performance analysis and optimization design of the motor. Based on the numerical analysis of the 3D electromagnetic field, the three electromagnetic parameters of permanent magnet synchronous motors with U form interior rotor structures are calculated by FEA. The rules of the leakage coefficient and reactance parameters changing with the air gap length, permanent magnet magnetism length, and isolation magnetic bridge dimensions in the rotor are given. The calculated values agree well with the measured values. The FEA results are integrated with the self compiled electromagnetic design program to optimize the prototype motor. The tested performances of the prototype motor prove that the method is suitable for the optimization of motor structure.

Design and Characteristic Analysis of Vaccum Pump Using Moving Magnet type Linear Oscillatory Actuator (가동 영구자석형 리니어 진동 액츄에이터를 이용한 진공 펌프의 설계 및 특성해석)

  • Cho, Sung-Ho;Kim, Duk-Hyun;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.61-63
    • /
    • 2002
  • This paper deals with the design of vaccum pump using moving magnet type linear oscillaory actuator based on the design procedure and the characteristic analysis. To improve the starting characteristic, the optimum spring constant is detected and redesigned. The parameter was calculated by Finite Element Method(FEM). In order to dynamic characteristic analysis. Time difference method with voltage and kinetic equation is used.

  • PDF

Minimization of Cogging Torque in Permanent Magnet Motors by Stator Pole Shoe Pairing and Magnet Arc Design using Genetic Algorithm (유전자 알고리즘을 이용한 영구자석 모터의 고정자 잇날 페어링 및 자석 극호각 설계에 의한 코깅 토오크의 저감 설계)

  • Eom, Jae-Bu;Hwang, Geon-Yong;Hwang, Sang-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Cogging torque is often a principal source of vibration and acoustic noise in high precision spindle motor applications. In this paper, cogging torque is analytically calculated using energy method to show that Fourier spectra of airgap permeance function and airgap MMF function are the most important design parameters to control cogging torque. To control these functions, stator pole shoe pairing and magnet arc design are proposed to minimize cogging torque. As for optimization technique, genetic algorithm is applied to handle trade-off effects of design parameters. Results show that the proposed method can reduce the cogging torque effectively.

Optimal Design of a Direct-Drive Permanent Magnet Synchronous Generator for Small-Scale Wind Energy Conversion Systems

  • Abbasian, Mohammadali;Isfahani, Arash Hassanpour
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • This paper presents an optimal design of a direct-drive permanent magnet synchronous generator for a small-scale wind energy conversion system. An analytical model of a small-scale grid-connected wind energy conversion system is presented, and the effects of generator design parameters on the payback period of the system are investigated. An optimization procedure based on genetic algorithm method is then employed to optimize four design parameters of the generator for use in a region with relatively low wind-speed. The aim of optimization is minimizing the payback period of the initial investment on wind energy conversion systems for residential applications. This makes the use of these systems more economical and appealing. Finite element method is employed to evaluate the performance of the optimized generator. The results obtained from finite element analysis are close to those achieved by analytical model.